
Center for
Bioinformatics

Technical Guide

caCORE 1.0

U.S. Department of
Health and Human Services

Copyright © 2002 National Cancer Institute Center for Bioinformatics. All Rights Reserved.

National Cancer Institute Center for Bioinformatics
6116 Executive Blvd. Suite 403

Rockville, Maryland 20852
USA

http://ncicb.nci.nih.gov
ncicb@nih.gov

TABLE OF CONTENTS

Introduction to caCORE: the NCICB Core Infrastructure.. 5

1 Cancer Bioinformatics Infrastructure Objects: caBIO.. 8

1.1 The caBIO Domain Objects and the Unified Modeling Language................ 9

1.1.1 Relationships Among Classes... 11

1.2 The Domain Object Hierarchy... 15

1.3 caBIO API Overview... 18

1.3.1 The Java API Search/Retrieve Paradigm...................................... 19

1.3.2 The SOAP API.. 22

1.3.3 The HTTP Interface .. 23

1.4 The caBIO Java API .. 24

1.4.1 Installing the caBIO Java API... 25

1.4.2 Defining the ClassPath.. 26

1.4.3 Compiling and Running the GeneDemo Program........................ 26

1.4.4 Troubleshooting .. 27

1.4.5 Understanding the GeneDemo Program 28

1.5 The caBIO SOAP API ... 30

1.5.1 Introduction to SOAP ... 30

1.5.2 The SOAP API and caBIO ... 30

1.5.3 Using the SOAP API with Perl and SOAP::LITE........................ 31

1.6 The caBIO HTTP Interface.. 36

1.6.1 Overview... 36

1.6.2 Using the HTTP Interface... 37

1.6.3 Drilling Down Through Xlinks... 38

1.6.4 Controlling the Number of Items Returned 38

1.6.5 Specifying the IP Address and Port in the URL 38

1.6.6 Applying XSL to XML Output... 39

1.7 caBIO Data Sources... 40

1.8 References.. 49

1.9 The Domain Object Catalog .. 50

1.9.1 gov.nih.nci.caBIO.bean... 50

1.9.2 gov.nih.nci.caBIO.evs ... 56

1

1.9.3 gov.nih.nci.caBIO.util.das .. 57

1.10 SearchCriteria Object Mappings.. 60

2 Enterprise Vocabulary Services.. 68

2.1 Introduction to the NCI Enterprise Vocabulary Services 69

2.1.1 NCI Thesaurus .. 69

2.1.2 NCICB Research Initiatives.. 69

2.1.3 NCI Metathesaurus ... 70

2.2 Local NCI Vocabularies .. 73

2.2.1 The NCI Thesaurus Vocabulary ... 73

2.2.2 The MMHCC Vocabulary .. 77

2.2.3 The Core Terminology and Reference Model Vocabulary........... 80

2.3 The Metaphrase Web Interface.. 82

2.3.1 Navigating Over Related Concepts... 84

2.3.2 MeSH Headings Occurring in the Metathesaurus 85

2.3.3 Advanced Browsing Options .. 86

2.3.4 Viewing the NCI Thesaurus.. 87

2.4 The caBIO Java API to the Enterprise Vocabulary Services....................... 88

2.5 Downloadable Flat File Formats.. 91

3 Cancer Data Standards Repository ... 92

3.1 The NCI Cancer Data Standards Repository ... 93

3.2 Data Elements in the ISO/IEC 11179 Standard... 95

3.2.1 Concepts and Terminology ... 95

3.2.2 Administration and Stewardship in the CaDSR............................ 98

3.3 The caDSR Web Interface ... 100

3.3.1 The caDSR Search Interfaces ... 100

3.3.2 Maintenance Screens for Administered Components................. 106

3.3.3 Creating Administered Components... 107

3.4 Overview of the caDSR Data Model ... 109

3.5 The caDSR Table Catalog ... 113

3.6 caDSR Entity Relationships... 118

2

List of Figures
Figure 1.1.1. UML class diagram. .. 9

Figure 1.1.2. (a) Abstract schematic for a UML class. (b) A simple class called Gene. 10

Figure 1.1.3. Rational Rose access modifier representations. .. 10

Figure 1.1.4. A one-to-one association with unidirectional navigability...................................... 11

Figure 1.1.5. A bidirectional many-to-one relation. ... 11

Figure 1.1.6. Aggregation and association.. 12

Figure 1.1.7. Generalization relationship.. 13

Figure 1.1.8. The caBIO object managers. ... 13

Figure 1.1.9. Interface as the stereotype name.. 14

Figure 1.2.1. The domain object hierarchy. .. 15

Figure 1.2.2. The SearchCriteria inheritance hierarchy. .. 17

Figure 1.3.1. The caBIO architecture.. 18

Figure 1.3.2. The logical deployment of the caBIO packages for data retrieval. 21

Figure 1.4.1. The caBIO Java API.. 25

Figure 1.5.1. The caBIO architecture and the SOAP interface... 31

Figure 1.6.1. The caBIO HTTP interface. .. 36

Figure 1.7.1. caBIO objects supporting basic research... 41

Figure 1.7.2. caBIO objects supporting clinical research. .. 42

Figure 1.7.3. The caBIO Java EVS package... 48

Figure 2.2.1. An overview of the NCI Thesaurus infrastructure .. 75

Figure 2.2.2. The MMHCC Cancer Models Database.. 78

Figure 2.2.3. The CTRM Vocabulary Browser. ... 80

Figure 2.3.1. The NCI Metaphrase web interface... 83

Figure 2.3.2. The Information page for a Concept in the Metaphrase browser. 84

Figure 2.3.3. Metaphrase hyperlinks (in green) to Entrez PubMed references. 86

Figure 2.3.4. The advanced options menubar. .. 86

Figure 2.3.5. The NCI Thesaurus vocabulary tree.. 87

Figure 2.4.1. The caBIO-EVS Java interface. .. 88

Figure 2.4.2. Using the caBIO EVS Java to retrieve concepts. .. 89

Figure 2.4.3. Output generated by executing the code in Figure 2.4.2. .. 90

Figure 3.2.1. The basic ISO/IEC 11179 UML Model. .. 96

Figure 3.2.2. Hierarchical relationships among metadata components. 98

3

Figure 3.3.1. The caDSR Home page ... 100

Figure 3.3.2. The Browse/Maintain screen associated with Data Concepts. 101

Figure 3.3.3. A list of Concept Domains to use as search criteria. ... 101

Figure 3.3.4. Full Text Search Screen.. 103

Figure 3.3.5. 11179 Attributes Search. ... 104

Figure 3.3.6. The Search Results Table .. 105

Figure 3.3.7. Browsing Screen for ADDITIONAL_RACE_ETHNICITY 106

Figure 3.3.8. Maintenance screen. .. 107

Figure 3.3.9. Creating a new data element component.. 108

Figure 3.4.1. An abstract view of the caDSR data model... 109

Figure 3.4.2. Auxillary tables used to implement many-to-many relations................................ 110

Figure 3.4.3. Auxillary tables used to implement many-to-many relations................................ 111

List of Tables
Table 1.3.1. Common methods implemented by all SearchCriteria objects................................ 19

Table 1.4.1. Packages included in the caBIO Java API.. 24

Table 1.5.1 Frequently used caBIO SOAP services. .. 32

Table 2.3.1. NCI local source vocabularies included in the Metathesaurus. 82

Table 3.2.1. Derived Data Elements (also called Complex Data Elements). 97

Table 3.4.1. The metadata component tables in the data model ... 109

4

Introduction to caCORE: the NCICB Core Infrastructure
The last decade has produced a cornucopia of genomic information that has just begun to be

examined. With this accumulation of bioinformatic data has come a paradigm shift to
translational research, and a directive to more quickly advance discoveries in basic research to
complex clinical settings and trials. This calls not only for advanced analytic tools and
customized bioinformatics data warehouses, but, in addition, for computational environments
and software tools that support the development of advanced data-mining applications and
information management tasks in which the new scientist must participate. The National Cancer
Institute’s Center for Bioinformatics (NCICB) has as its mission the goal of bridging these
diverse initiatives via a core infrastructure called caCORE.

Towards this end, NCICB is working to develop a “standards stack” within the cancer
research community that integrates:

• controlled vocabularies (dictionaries, ontologies, and thesauri),
• common data elements (metadata), and
• logical models of entities within and across each domain.

We refer to the combination of technologies in the stack as caCORE. The caCORE
infrastructure is composed of three primary components: the Enterprise Vocabulary Services
(EVS), the Cancer Data Standards Repository (caDSR), and the Cancer Bioinformatics
Infrastructure Objects (caBIO).

A guiding principle throughout all of the NCICB projects is the need to establish and/or
adhere to agreed-upon standards of data representation, exchange, and manipulation. The ever-
present need for well-defined terminologies in scientific domains has become even more critical
with the increased prevalence of electronic data processing and exchange. The EVS provides a
set of standardized, controlled vocabularies for the life sciences, along with tools and guidelines
for the development and curation of such vocabularies. The vocabularies and ontologies
managed by the EVS span multiple disciplines and domains, including human and mouse
pathology, epidemiology, molecular biology, genetics, clinical trials, patient care, and various
other biomedical and bioinformatic application areas. The EVS is described in more detail in
Section 2 of this manual.

The caDSR addresses a related but somewhat orthogonal aspect of data representation and
exchange; specifically, the need to standardize the terminology, report forms, and protocols
implemented in clinical trials. Although much data have accrued over the years in ongoing
clinical trials, to date, little effort has been made to standardize the methods of record-keeping
and reporting. As a result, an enormous amount of valuable information that could be used to
advance efforts in related studies has become effectively inaccessible, and the capacity to
generalize important results from these legacy data has been precluded.

Based on the ISO/IEC11179 standard for metadata, the caDSR manages the NCI Common
Data Elements (CDEs), and provides a registry for agreed upon clinical terms and their usage.
This registry is implemented in Oracle 8i databases, as described in Section 3.

While the EVS and the caDSR address the representational needs and standardization issues
involved in controlled vocabularies, report forms, and terminologies, the caBIO project provides
a comprehensive set of pre-defined data structures, programming interfaces, and customized data

5

sources to support the development of advanced software applications seeking to elucidate the
molecular basis of cancer.

In keeping with the principle of conformance to emerging standards for data exchange, all of
the caBIO data objects are “XML aware,” and their design embodies many of the principles
advocated by the Life Sciences Research Group at the Object Management Group (OMG).
Several transparent programming interfaces are available, which support whatever might be the
developer’s language of choice — including Java, Perl, C++, Python, or even HTML.

Many of the data structures and development tools provided by caBIO were initially
developed in response to the need to directly access information provided by the Cancer Genome
Anatomy Project (CGAP) website. CGAP is an interactive website providing access to vast
reserves of genomic information filtered by tissue type, histological status, chromosome location,
and biological pathways. Some example applications that have used the CGAP resources
include:

• Analysis of correlations between allelic variants of genes and disease states
• Identification of single-nucleotide polymorphisms from EST chromatograms
• Identification of potential tumor markers and antigens
• In silico cloning of novel endothelial-specific genes
• Clustering of highly expressed genes in chromosomal domains

The overwhelming success of CGAP and the invaluable resources it provides led to a good
deal of “screen scraping” of the pages it produced. The information produced by a first query
might serve as input to a second stage of analysis, and thus the application developer was forced
to work around the HTML headers and banners to extract interim results.

But caBIO is more than a programmatic interface to CGAP; it provides access to many other
data sources, as well as to software development tools that are customized for bioinformatic
data-mining applications. One such application is NCI’s Cancer Molecular Analysis Project
(CMAP), which enables researchers to identify and evaluate molecular targets in cancer. The
CMAP website was developed using the data structures and software tools provided by the
caBIO infrastructure.

caBIO provides domain objects (Genes, Chromosomes, Sequences, etc.) which, in
conjunction with search criteria objects, encapsulate the complexities of cross-platform data
exchange and SQL query statements. Some of the data sources caBIO supplies access to include
NCI’s CGAP, CMAP, and GAI databases; NCBI’s Unigene, Homolgene, and LocusLink
databases; the Distributed Annotation Server (DAS) at UCSC; and BioCarta Pathway data.

In summary, the caCORE infrastructure brings a set of bridging technologies to the frontiers
of cancer research. The EVS provides a web interface to a MetaThesaurus spanning over 70
controlled vocabularies specific to the areas of cancer resarch, prevention, and treatment. The
caDSR provides a platform for registered common data elements to be used in the development
of protocols, adverse event reports, and clinical report forms for use in clinical trials. The caBIO
software development tools provide domain modeling of both the bioinformatic as well as
administrative components of these efforts, and supply access to both customized data
warehouses and public databases.

The remainder of this manual is organized as follows. The Developer’s Guide to caBIO
(Section 1) includes a description of the Unified Modeling Language (UML) model of the caBIO

6

http://cmap.nci.nih.gov/

objects, an overview of the caBIO architecture and its underlying database search paradigm,
setup instructions and examples for using the different caBIO application programming
interfaces (APIs), and a description of the data sources to which caBIO provides access.

The discussion of the Enterprise Vocabulary Services in Section 2 includes a more detailed
description of those services, an introduction to the EVS Metaphrase web server, instructions on
how to use the EVS’s Java API for programmatic access, and discussions of some of the more
important local vocabularies developed at NCI.

Section 3 provides an introduction to the Cancer Data Standards Repository at NCI, and
includes a review of the ISO/IEC 11179 standard on which it is based along with descriptions of
the web interface and APIs to the caDSR.

7

1 CANCER BIOINFORMATICS INFRASTRUCTURE OBJECTS: CABIO 11 CCAANNCCEERR BBIIOOIINNFFOORRMMAATTIICCSS IINNFFRRAASSTTRRUUCCTTUURREE OOBBJJEECCTTSS:: CCAABBIIOO

8

1.1 The caBIO Domain Objects and the Unified Modeling Language 1.1 The caBIO Domain Objects and the Unified Modeling Language
The Unified Modeling Language (UML) is an international standard notation for specifying,

visualizing, and documenting the artifacts of an object-oriented system. Defined by the Object
The Unified Modeling Language (UML) is an international standard notation for specifying,

visualizing, and documenting the artifacts of an object-oriented system. Defined by the Object
Management Group (OMG), UML emerged as the result of several complementary systems of
software notation, and has now become the de facto standard for visual modeling. In its entirety,
the UML is composed of nine different types of diagrams. Each diagram type captures a different
view of the system, emphasizing specific aspects of the design such as the class hierarchy,
message-passing behaviors between objects, the configuration of physical components, and user
interface capabilities. In this section we describe the UML class diagram as it is used to depict
the caBIO class objects.

1

0..*

0..*
GoOntologyRelationship

0..*

<<Interface>>
Relationable

<<Interface>>
Ontologable

<<Interface>>
Expressable

DiseaseRelationship

0..*

ClinicalTrialProtocol 0..*

0

0..*

..*

Agent

OrganRelationshi

1..* Target
0..*

0..*

0..* 1..* 0..*

1

0..*

ExpressionExperiment

 Histopathology

0..*

0..*
0..* 1

1

1 Tissue

Libr ary

1
0..*

1..* 0..*
TraceFile

0..* 1

1

1 1

1

0..*

ProteinHomolog
1..

MapLocation *

0..* Pathway
0..* CMAPOntology

1
Chromosome

1

0..* GeneAlias

0..*
0..*

Sequence 1..* 1

ReadSequence 1 1
ConsensusSequence

Contig

0..*
0..*

GoOntology
Protocol

GeneHomolog

Gene

SAGEExperimen ESTExperiment

ExpressionFeature
Organ

Anomaly
Disease Protein

SNP
Clone

Taxon

Figure 1.1.1. UML class diagram.
Figure 1.1.1 is not an exhaustive catalog of all objects in caBIO but, instead, depicts a subset

of objects that are primary to bioinformatics applications and cancer research. Class objects can
have a variety of possible relationships to one another, including “is derived from,” “contains,”
“uses,” “is associated with,” etc. UML provides specific notations to designate these different
kinds of relations, and enforces a uniform layout of the objects’ attributes and methods — thus
reducing the learning curve involved in interpreting new software specifications or learning how
to navigate in a new programming environment.

Figure 1.1.2 (a) is a schematic for a UML class representation, and 1.1.2(b) is an example of
how a simple class object might be represented in this scheme. The enclosing box is divided into
three sections: The topmost section provides the name of the class, and is often used as identifier

9

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

for the class. The middle section contains a list of attributes (data members) for the class. The
bottom section lists the object’s operations (methods). In the example below, (b) specifies the
Gene class as having a single attribute called sequence and a single operation called
getSequence():

+operation()
-attribute

Class

 +getSequence()
-sequence

Gene

 (a) (b)

Figure 1.1.2. (a) Abstract schematic for a UML class. (b) A simple class called Gene.

The operations and attributes of an object are called its features. The features, along with the
class name, constitute the signature, or classifier, of the object. The UML provides explicit
notation for the permissions assigned to a feature. UML tools vary with how they represent their
private, public, and protected notations for their class diagrams.

The caBIO development team uses Rational RoseTM software, a UML modeling tool
available from Rational Software, Inc. Rational Rose uses variants on a lock and key icon (refer
to Figure 1.1.3); simple tools use a “-” prefix for private features, a “+” precedes public features,
and protected features have a “#”. In the above example, the Gene object’s sequence attribute is
private and can only be accessed using the public getSequence() method.

Figure 1.1.3. Rational Rose access modifier representations.

The caBIO classes represented in Figure 1.1.1 show only class names; both the operations
and attributes are suppressed in that diagram. This is an example of a UML view: Details are
hidden where they might obscure the bigger picture the diagram is intended to convey. Most
UML design tools, such as Rational Rose, provide means for selectively suppressing visible
details without removing the information from the underlying design model. In Figure 1.1.1, the

10

http://www.rational.com/uml/index.jsp

emphasis is on the relationships that are defined among the objects, rather than on any particular
class’s features.
emphasis is on the relationships that are defined among the objects, rather than on any particular
class’s features.

In more detailed class diagrams, it is common practice to display only those features that are
part of the object’s interface. An interface is the externally visible behavior of a class or
component. In most cases, this means that only the object’s public methods are shown, as the
attributes are generally private or protected. The most salient information contained in Figure
1.1.1 is the objects’ names and their relationships to one another, which are described next.

In more detailed class diagrams, it is common practice to display only those features that are
part of the object’s interface. An interface is the externally visible behavior of a class or
component. In most cases, this means that only the object’s public methods are shown, as the
attributes are generally private or protected. The most salient information contained in Figure
1.1.1 is the objects’ names and their relationships to one another, which are described next.

1.1.1 Relationships Among Classes 1.1.1 Relationships Among Classes
A quick glance at Figure 1.1.1 shows that most of the other classes are organized around the

Gene and Sequence classes. These two classes are themselves related to each other, by the has-a
relation. More generally, the relationships occurring among the caBIO objects are of three types:
association, aggregation, and generalization. The most primitive of these relationships is
association, which represents the ability of one instance to send a message to another instance.
The relationship between the Gene and Sequence classes is an example of an association and is
depicted by a simple straight line connecting the two classes.

A quick glance at Figure 1.1.1 shows that most of the other classes are organized around the
Gene and Sequence classes. These two classes are themselves related to each other, by the has-a
relation. More generally, the relationships occurring among the caBIO objects are of three types:
association, aggregation, and generalization. The most primitive of these relationships is
association, which represents the ability of one instance to send a message to another instance.
The relationship between the Gene and Sequence classes is an example of an association and is
depicted by a simple straight line connecting the two classes.

Optionally, a UML relation can have a label providing additional semantic information, as
well as numerical ranges such as 1..n at its endpoints. These cardinality constraints indicate that
the relationship is one-to-one, one-to-many, many-to-one, or many-to-many, according to the
ranges specified and their placement. For example, the Gene-to-Chromosome relation in Figure
1.1.1 is many-to-one.

Optionally, a UML relation can have a label providing additional semantic information, as
well as numerical ranges such as 1..n at its endpoints. These cardinality constraints indicate that
the relationship is one-to-one, one-to-many, many-to-one, or many-to-many, according to the
ranges specified and their placement. For example, the Gene-to-Chromosome relation in Figure
1.1.1 is many-to-one.

UML relations may also have directionality, as in Figure 1.1.4. Here, a Library object is
uniquely associated with a Protocol object, with an arrow denoting unidirectional navigability.
Specifically, the Library object has access to the Protocol object (i.e., there is a getProtocol()
method), but the Protocol object does not have access to the Library object.

UML relations may also have directionality, as in Figure 1.1.4. Here, a Library object is
uniquely associated with a Protocol object, with an arrow denoting unidirectional navigability.
Specifically, the Library object has access to the Protocol object (i.e., there is a getProtocol()
method), but the Protocol object does not have access to the Library object.

Protocol Library

Figure 1.1.4. A one-to-one ass tion with unidirectional navigability. Figure 1.1.4. A one-to-one ass tion with unidirectional navigability.

Figure 1.1.5 depicts a bidirectional man
Clone objects. Each Sequence may have at
be associated with many Sequences. To get
we call the getSequenceClone() method. Ea
Sequence objects using the getSequences()
using a single undirected line between the t

Figure 1.1.5 depicts a bidirectional man
Clone objects. Each Sequence may have at
be associated with many Sequences. To get
we call the getSequenceClone() method. Ea
Sequence objects using the getSequences()
using a single undirected line between the t

Clone
+1

Figure 1.1.5. A bidirFigure 1.1.5. A bidir

has

ociaocia
y-to-one relation between Sequence objects and
most one Clone associated with it, while a Clone may
 information about a Clone from the Sequence object,
ch Clone in turn can return its array of associated
method. This bidirectional relationship is shown
wo objects.

y-to-one relation between Sequence objects and
most one Clone associated with it, while a Clone may
 information about a Clone from the Sequence object,
ch Clone in turn can return its array of associated
method. This bidirectional relationship is shown
wo objects.

+1..n
Sequence

ectional many-to-one relation. ectional many-to-one relation.

11

The next relationship exhibited by caBIO objects is aggregation, which denotes a whole/part
relationship. This relationship is exactly the same as an association with the exception that
instances cannot have cyclic aggregation relationships (i.e., a part cannot contain its whole). So
a Library can contain Clones but not vice-versa. Aggregation is represented by empty diamonds,
as shown in the Clone-to-Library relation of Figure 1.1.6.

comprised of
y +1..n

generated from

Clone

Sequence

Figure 1.1.6 shows

(a)
(b)
(c)

one or more Se
the Clone is co
the Clone may

Only the relationsh
simple associations.

In UML, the empty
to its part. More speci
contained objects may
automatically destroyed

All information re
caBIO objects. Indeed
desired object type, de
from the databases, an
alternatively, an array
information about this
depth overview of the
objects, their methods a

The final relationsh
generalization relation
classes. Classes partici

Generalization den
specific element. The m
has all of its propertie
Both the SNP and Rep
is designated by conne
to-Repeat and Sequenc

+1
Figure 1.1.6. Aggregation

 a more complex network of re

quences is contained in a Clon
ntained in a Library, which co
 have one or more Traces.

ip between the library and th

 diamond of aggregation desi
fically, this means that while
have been created prior to the
 when the Library goes out of

trieval in caBIO is implemen
, the quintessential operation
fine appropriate search criter
d use the search results to po
 of instances, in the event t
paradigm will be detailed in t
 caBIO domain objects. A c
nd their JAVADOC is availab

ip to be covered in this docum
ship between the SequenceVa
pating in generalization relatio

otes a taxonomic relationship b
ore specific element is fully c

s, members, and relationships
eat objects follow that definit
cting unidirectional empty arro
eVariant-to-SNP relations of F

+1
 and associati

lations. This d

e;
mprises one o

e clone is an

gnates that the
 the Library i
Library object
 scope.

ted by search
 is to instanti
ia to select sp
pulate either t
hat more than
he next sectio
omprehensive
le at the caBIO

ent is generali
riant parent c
nships form a

etween a mor
onsistent with
) and may co

ion. The super
w heads, as sh
igure 1.1.7.
+1..n
Librar
on.

iagram

r more C

aggreg

 whole
s comp
’s creat

method
ate a “b
ecific

he orig
 one m
n, whic
 listing
 JavaD

zation.
lass and
 hierarc

e gener
 the mo
ntain a
class-to
own in
Trace
+1..n
+1
indicates that:

lones;

ation. The others are

maintains a reference
osed of Clones, these
ion, and so will not be

s associated with the
lank” instance of the

instances of that type
inal instance itself or,
atch is found. More

h provides a more in-
 of all of the domain
ocs page.

 Figure 1.1.7 depicts a
 the Repeat and SNP
hy, as depicted here.

al element and a more
re general element (it

dditional information.
-subclass relationship
 the SequenceVariant-

12

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/index.html

has a

SNP

Repeat

is a

+1

is a

+1

+1

Allele

SequenceVariant

+1

Figure 1.1.7. Generalization relationship. Figure 1.1.7. Generalization relationship.

As noted, the class diagram in Figure1.1.1 is a reduced form of the complete class diagram.
A more complete view can be found at the caBIO Object Model

As noted, the class diagram in Figure1.1.1 is a reduced form of the complete class diagram.
A more complete view can be found at the caBIO Object Model pages. The contents of these
pages were extracted automatically from the Java source code by the Rational Rose Web
Publisher facility. Each page generates two frames; the tree structure on the left-hand side
provides an index to the different views, and the right-hand side displays the diagrams associated
with the currently selected view. To view the full caBIO class diagram:

1. Expand the Logical View folder located in the upper-left frame.
2. Double click on the Main icon.
3. Click on any object in the model to view its related attributes and associates.

 Object Layer

Domain
Objects

Data
Access
Objects

Object
Managers

RMI

Data
Layer

Presentation
Layer

Figure 1.1.8. The caBIO object managers.

Double clicking on Logical View/Managers brings up a diagram illustrating the relationship
between the various manager objects and the objects that they manage. As depicted
schematically in Figure 1.1.8, the manager objects act as intermediaries to both the client side
and the data sources on the back end, brokering requests and retrieving data as needed.

The Logical View/ExpressionClasses detail shows both inheritance relationships among
expression classes as well as their usage of related classes.

Some of these diagrams introduce additional UML notation not yet discussed — specifically,
the interface notation. For example, the Logical View/Beans diagram shows a few beans and a

13

http://ncicb.nci.nih.gov/content/coreftp/rose/caBIO1-0/root.html
http://ncicb.nci.nih.gov/content/coreftp/rose/caBIO1-0/root.html

few interfaces. A UML diagram may explicitly label an interface using the <<interface>>
notation, thus making it part of its stereotype name:
few interfaces. A UML diagram may explicitly label an interface using the <<interface>>
notation, thus making it part of its stereotype name:

+ExpressionExperiment +ExpressionLevel <<interface>>
BioSampleable ExpressionExperiment

Figure 1.1.9. Interface as the stereotype name. Figure 1.1.9. Interface as the stereotype name.

Alternatively, a diagram may use the so-called “lollipop notation,” where an interface is
represented by a small circle, as in:

Alternatively, a diagram may use the so-called “lollipop notation,” where an interface is
represented by a small circle, as in:

BioSampleable

The next two sections provide more details of the caBIO objects themselves. Section 1.2The next two sections provide more details of the caBIO objects themselves. Section 1.2
describes the caBIO object hierarchy, their related classes, and the various search criteria objects.
Section 1.3 discusses the design of the applications programming interfaces and the objects that
implement them. Throughout these discussions, the user should refer to the caBIO Java Doc and
caBIO Object Model web pages to locate further information about caBIO objects.

14

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/
http://ncicb.nci.nih.gov/content/coreftp/rose/caBIO1-0/root.html

1.2 The Domain Object Hierarchy 1.2 The Domain Object Hierarchy
As depicted in Figure 1.2.1, the domain objects in the bean package define a wide, shallow

hierarchy. Here, we use the term “domain object” to refer to those Java bean classes that
correspond to biological entities and bioinformatic concepts. All of the domain objects descend
directly from java.lang.object, and only four of the domain objects have subclasses.

As depicted in Figure 1.2.1, the domain objects in the bean package define a wide, shallow
hierarchy. Here, we use the term “domain object” to refer to those Java bean classes that
correspond to biological entities and bioinformatic concepts. All of the domain objects descend
directly from java.lang.object, and only four of the domain objects have subclasses.

ConsensusSequence

java.lang.object

(all other domain objects)

ReadSequence SAGEExperiment

GeneHomolog

Sequence Protein

ProteinHomolog

Gene

ESTExperiment

Tissue Agent ExpressionExperiment

Figure 1.2.1. The domain object hierarchy. Figure 1.2.1. The domain object hierarchy.

Additional logical and tactical structure, however, derive from the interfaces implemented by
some of these domain objects, and from related bean objects, such as the SearchCriteria beans
and a small set of “relationable” objects.

Additional logical and tactical structure, however, derive from the interfaces implemented by
some of these domain objects, and from related bean objects, such as the SearchCriteria beans
and a small set of “relationable” objects.

Each domain object Xxx has a corresponding SearchCriteria named XxxSearchCriteria.
Thus, for example, there is a GeneSearchCriteria object, a LibrarySearchCriteria object, etc.,
corresponding to the Gene and Library beans, respectively. The inheritance relations that hold
among the SearchCriteria objects reflect their associations with the domain objects and, in
addition, capture the interfaces that are implemented by some of the domain objects. Figure 1.2.2
shows the SearchCriteria object hierarchy.

Each domain object Xxx has a corresponding SearchCriteria named XxxSearchCriteria.
Thus, for example, there is a GeneSearchCriteria object, a LibrarySearchCriteria object, etc.,
corresponding to the Gene and Library beans, respectively. The inheritance relations that hold
among the SearchCriteria objects reflect their associations with the domain objects and, in
addition, capture the interfaces that are implemented by some of the domain objects. Figure 1.2.2
shows the SearchCriteria object hierarchy.

All objects in the bean package implement the java.io.serializable interface. In addition, all
domain objects implement gov.nih.nci.caBIO.util.XMLInterface, thus facilitating their transport
to the Presentation Layer where the SOAP and HTTP applications programming interfaces
(APIs) are implemented. Specifically, each domain object implements the following methods:

All objects in the bean package implement the java.io.serializable interface. In addition, all
domain objects implement gov.nih.nci.caBIO.util.XMLInterface, thus facilitating their transport
to the Presentation Layer where the SOAP and HTTP applications programming interfaces
(APIs) are implemented. Specifically, each domain object implements the following methods:

• toXML() – returns an XML-encoding of all of the object’s “top-level” attributes (i.e.,
number and character-valued features), with all “deeper” information (e.g., arrays,
embedded objects, etc.) encoded as XLinks. This is the default XML-encoding for the
SOAP and HTTP interfaces.

• toXML() – returns an XML-encoding of all of the object’s “top-level” attributes (i.e.,
number and character-valued features), with all “deeper” information (e.g., arrays,
embedded objects, etc.) encoded as XLinks. This is the default XML-encoding for the
SOAP and HTTP interfaces.

15

The notion of an Xlink is similar to a pointer or reference in a programming
language; the XML Linking Language (XLink) allows complex elements to be embedded
in XML documents as URLs which can be subsequently deployed to retrieve the
elements themselves.

• toXMLDOC() – returns an XML-encoding of all of the object’s attributes; i.e., all XLinks
are filled in one level deep. This method implements the getHeavyXML options used by
the SOAP and HTTP interfaces.

• toXMLProcessor(...) – takes a list of fillin tags specifying which XLinks are to be
selectively expanded in the XML-encoding.

Three additional interfaces are defined in gov.nih.nci.caBIO.bean: Expressable, Ontologable,
and Relationable. Currently, only the Gene object implements Expressable. This interface
defines a single method: getExpression(), which returns an array of ExpressionExperiments
containing expression levels for the gene. But the definition of “expressable” as an interface also
posits an implicit relationship between the Gene class and the ExpressionExperiment objects in
the hierarchy, as each of these implements the method getExpressables(), which returns an array
of Expressable objects.

A more complex set of relationships derives from the Ontologable and Relationable
interfaces. The Organ, Disease, CMAPOntology, and GoOntology classes all implement the
Ontologable interface, as each of these object types defines entities occurring in externally
defined ontologies or taxonomies. The Gene Ontology Consortium, for example, defines three
gene ontologies, based on molecular function, biological process, and cellular location of the
gene. Similarly, the CMAP ontology maps genes according to functional classifications. Other
controlled vocabularies, such as those defined by the Enterprise Vocabulary Services (EVS) at
NCI, define disease and organ taxonomies.

Each of the domain objects implementing the Ontologable interface implements the
getChildRelationships() and getParentRelationships() methods, which can be applied to get the
parent and descendant terms in the vocabulary where the object’s name is defined. The return
type of both of these methods is actually an array of Relationable[] objects – i.e., objects that
implement the Relationable interface. Objects in the bean package implementing the
Relationable interface are the OrganRelationship, DiseaseRelationship,
CMAPOntologyRelationship, and GoOntologyRelationship classes.

Each instance of a relationship object stores its relationship type (child/parent) and the set of
Ontologable objects participating in that relationship. For example, an Organ representing the
heart might have a parent relationship to two other Organs representing the left and right
ventricles. The parent’s method getChildRelationships() would return this (object-ified)
relationship, and the relationship, in turn, would provide access to the Ontologable children
stored there. More specifically, all Relationable objects implement the getOntologies() method
for just this purpose.

While the inheritance hierarchy for the domain objects does not reveal these interface
implementations, the hierarchy of SearchCriteria objects (Figure 1.2.2) does. As described in the
general discussion of the caBIO APIs in the following section, the SearchCriteria objects are a
critical part of the infrastructure that provides caBIO’s powerful database search mechanisms.

16

http://www.geneontology.org/
http://ncicb.nci.nih.gov/core/EVS

(all other SearchCriteria objects)

TissueSearchCriteria

AgentSearchCriteria

OrganRelationshipSearchCriteria

GoOntologyRelationshipSearchCriteria

DiseaseRelationshipSearchCriteria

CMAPOntologyRelationshipSearchCriteria

RelationshipSearchCriteria

OrganSearchCriteria

DiseaseSearchCriteria

GoOntologySearchCriteria

CMAPOntologySearchCriteria

OntologySearchCriteria

SAGEExperimentSearchCriteria

ESTExperimentSearchCriteria
ExpressionExperimentSearchCriteria

SearchCriteria

Figure 1.2.2. The SearchCriteria inheritance hierarchy. Figure 1.2.2. The SearchCriteria inheritance hierarchy.
Additional information about the caBIO objects in the bean package can be found in Section Additional information about the caBIO objects in the bean package can be found in Section

1.3, and a quick reference guide is included in Section 1.9. In particular, the API descriptions in
the next section offer important insight into the relationships between SearchCriteria and domain
objects. The online JavaDocs pages provide comprehensive specifications of the objects,
interfaces, and packages which together define the caBIO architecture and services.

17

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/index.html

1.3 caBIO API Overview
The caBIO infrastructure comprises an n-tiered architecture, as depicted in Figure 1.3.1. At

the back-end are various caBIO databases, flat files, and URLs to external databases and public
websites. At the front end is a Presentation Layer providing APIs capable of supporting a wide
variety of programming languages. The focus of the first part of this section is on the
Presentation Layer and its interfaces to the various clients as well as to the Java bean classes that
implement the Object Layer. The second part of this section focuses in greater detail on the
caBIO domain objects defined in the bean package. Throughout this discussion the reader may
wish to refer to the caBIO JavaDocs pages for additional information.

At the heart of the caBIO architecture are the bean classes that comprise the Object Layer.
Although the complete caBIO implementation includes a number of packages, this discussion is
limited to the bean, das, servlet, manager, and webservices packages that together implement the
APIs.

Figure 1.3.1. The caBIO architecture.

As depicted in Figure 1.3.1, the objects themselves fall into three primary groupings: (1)
domain objects that represent bioinformatic entities such as genes, chromosomes, sequences,
tissues, etc.; (2) managerial objects supporting the infrastructure, and (3) data access objects
interfacing to the back-end data sources.

18

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/index.html

Java applications send requests directly to the Object Layer using RMI, effectively bypassing
the Presentation Layer. All other applications require some type of interface, such as the SOAP
Engine or the JSPs provided by the Presentation Layer. We consider first how the Java API
operates, as these same processes must execute on the back-end of all other interfaces.

1.3.1 The Java API Search/Retrieve Paradigm
The driving force behind the caBIO design is a data-mining paradigm, and the basic

operation is a database search and retrieval, using a newly instantiated domain object as the
target to be populated with the data that are returned. The domain objects are contained in the
bean package. In addition to the methods that are particular to the individual classes, all domain
objects implement the search() method. Each domain object also has an associated
SearchCriteria object, which is the sole argument to the domain object’s search() method. For
example, corresponding to the Gene domain object, there is a GeneSearchCriteria object, and the
syntax of the Gene’s search method is:

myGene.search(myGeneSearchCriteria)

Each search criteria object has attributes that are used to constrain the search and define the
type of information that will be returned in the result set. In addition to attributes that are
particular to their associated domain objects, the object-specific search criteria classes inherit
methods and attributes from a generic SearchCriteria object. Table 1.3.1 lists some of the more
important inherited methods.

Method Description

setMaxRecordset() Sets the maximum number of result objects to return (default 1000)

setOrderBy() Sets the order by clause for the SQL

setReturnCount() Specifies that the number of objects found should be included in the search
result (default false).

setReturnObjects() Specifies that the objects themselves should be included in the search
result (default true)

setStartAt() Sets the number of the first member of the result array

Table 1.3.1. Common methods implemented by all SearchCriteria objects.

The return value of a domain object’s search() method is always an object of type
SearchResult, whose attributes and methods approximately mirror the attributes and methods of
the generic SearchCriteria object. For example, the SearchResult object has a method getCount()
that returns the number of objects that matched the specified criteria. This method’s return value
is only defined, however, when the associated SearchCriteria object specified that the number of
objects found should be included in the search result.

Similarly, the SearchResult object’s method getResultSet() returns an array of objects only if
the SearchCriteria specified that the objects themselves should be included in the search result.
Setting this last option to false is useful in situations where the only information that is needed is
the count of objects satisfying the criteria, and not the objects themselves. By default,

19

setReturnCount() is false and setReturnObjects() is true, unless the SearchCriteria options are
explicitly reset using these methods.

The SearchResult object’s methods getStartsAt() and getEndsAt() return the array index of
the first and last objects in the result array, respectively. While these methods might seem at first
to be gratuitous, they are actually a critical part of the caBIO API design, which provides a
“throttling” mechanism to limit the number of results returned on any single query. By default,
the maximum number is 1,000, but, as indicated here, this can be reset to a smaller or larger
number as desired.

As we will see, these same mechanisms are implemented in the subsequent API layers
providing interfaces to other programming languages. Given the enormous amount of currently
available bioinformatic data and their exponential rate of growth, this ability to receive large
amounts of data in bursts is indispensable.

Several additional methods further facilitate situations where a very large set of objects
match the search criteria. The SearchResult object’s method hasMore() returns true when further
results are available that are not included in the current SearchResult. In this case, the
SearchResult object’s method getNextCriteria() can be used to return a new SearchCriteria
object whose starting index picks up where the previous result set left off.

Other methods provided by the generic SearchCriteria object provide means of determining
whether or not a specific criteria has been defined, removing previously set criteria, and/or
adding new criteria to the current collection. Object-specific attributes are settable for the
SearchCriteria objects associated with specific domain objects. For example, the
GeneSearchCriteria object includes methods for specifying the desired gene symbol,
chromosome id, organism, etc.

SearchCriteria objects can also be embedded in one another to specify more complex
queries, via the method putSearchCriteria(). For example, to extract the set of all pathways
containing the gene PTEN, one can:

1. Create a GeneSearchCriteria(), myGenesCriteria.
2. Invoke: myGenesCriteria.SetSymbol(“PTEN”).
3. Create a PathwaySearchCriteria(), myPathsCriteria.
4. Invoke myPathsCriteria.putSearchCriteria (myGenesCriteria).
5. Create a Pathway domain object, myPathway.
6. Invoke myPathway.search(myPathsCriteria).

The result of step 6 will produce an array of pathways containing the PTEN gene. This
example demonstrates another feature of the caBIO design: Each domain object also serves as a
factory for creating multiple instances of that object. Reviewing the steps outlined above, we can
generalize the factory process as follows:

1. Instantiate a new domain object of the desired type.

2. Create a new SearchCriteria for that object, and set its attributes.

3. Execute the domain object’s search() method on that SearchCriteria, and store the results
in a generic SearchResult object.

4. Invoke the getResultSet() method on the SearchResult object and typecast its return value
to an array of the same type as the original domain object.

20

The installation of the caBIO software for a Java client (see Section 1.4The installation of the caBIO software for a Java client (see Section 1.4) includes a Java
archive file (cabio.jar) defining all of the caBIO domain objects as well as the protocols and
server information required to issue RMI requests to the caBIO servers. The logistics of
retrieving data for a Java client are as follows. First, the Java client application declares a new
instance of the object type of interest. For example, the client executes the statement:

Gene myGene = New Gene();

This instantiation of the new Gene object alerts the GeneManager on the caBIO server, and
causes a proxy for that manager to become resident on the client machine for the duration of the
application. All RMI requests on the Gene object from that point forward will be handled by the
protocols defined for the manager and proxy objects.

Other
clients

bean

Gene
Library
Tissue
Clone

…

Java
clients

Data
Access
Objects

db managers bean webservices

GeneService
LibraryService
TissueService
CloneService

…

Gene
Library
Tissue
Clone

…

COREManager
GeneManager
CloneManager

…

XML
Descriptors

 Tomcat

SOAP
Engine

 Servlets
JSPs

Figure 1.3.2. The logical deployment of the caBIO packages for data retrieval.

If a subsequent request such as myGene.getSequences() is issued, the instantiation of the
resulting Sequence objects will in turn be handled by a remote SequenceManager and a local
proxy. A logical view of the caBIO object managers is available in the caBIO Object Model
pages, and their specifications can be viewed on the JavaDocs pages. By virtue of the caBIO
object managers, the network details of the communication to the caBIO server are abstracted
away from the Java developer. Figure 1.3.2 is an alternative representation of the caBIO
architecture, emphasizing how some of Java packages in caBIO are deployed to implement the
different APIs.

A general rule of thumb for all caBIO domain objects is that only those attributes represented
by primitive data types (e.g., integer, string, float, etc.) are returned directly with a retrieved
object. For more complex types such as objects and arrays, access to these entities is provided,
but the objects themselves are not. Instead, the “containing” object provides methods for
retrieving these embedded objects recursively. Thus for example, a Gene object provides a
method called getSequences() to retrieve its associated genomic sequences once the Gene itself
has been obtained.

21

http://ncicb.nci.nih.gov/content/coreftp/rose/caBIO1-0/root.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/index.html

Similar mechanisms for returning only top-level information — with the option of drilling
down further where desired — are implemented in the SOAP and HTTP interfaces described
below. The SOAP and HTTP interfaces also provide mechanisms for controlling the number of
objects returned for a single query, corresponding to the SearchCriteria object’s
setMaxRecordset() and setStartAt() methods.

An important difference between the Java API and other interfaces to the caBIO is that only
Java applications have direct access to the domain objects and their methods, as they are defined
in a local jar file.

1.3.2 The SOAP API
caBIO’s Simple Object Access Protocol (SOAP) API is provided for non-Java applications

written in languages such as Perl, C, Python, etc. SOAP is a lightweight XML-based protocol for
the exchange of information in a decentralized, distributed environment. It consists of an
envelope that describes the message and a framework for message transport. caBIO uses the
open source Apache SOAP package, in combination with Jakarta Tomcat, to provide its web
services to users.

It is up to the application developer to select and install a SOAP client for the development
environment. Section 1.5 includes an example application that uses the SOAP::Lite client for
Perl. The SOAP request issued by the client is formatted as an XML document that is posted to
the caBIO server at a listening port reserved for SOAP requests. The response returned by the
server is also an XML document

All of the caBIO domain objects are “XML Aware” and are capable of serializing themselves
to XML for transport to a wide variety of platforms. These domain objects, however, do not
directly receive the SOAP requests, as they are first parsed by objects in the Presentation Layer.
Specifically, caBIO’s SOAP server receives requests from the remote SOAP client, and forwards
these to an appropriate class in the webservices package.

Each SOAP web service defined in the webservices package has methods mirroring those
defined for a corresponding domain object in the bean package. For example, the SOAP
GoOntologyService has methods called getChildRelationships(), getParentRelationships(),
getHomoSapienGenes(), and getMouseGenes(), corresponding to the GoOntology domain
object’s methods of the same name.

All of the SOAP services inherit from the parent class WebCriteriaInterpreter, whose two
methods are readInCriteria() and searchObjects(). Each of these methods takes two arguments: a
hashtable of tag/value pairs and a string specifying the object type to search for. The return value
of readInCriteria() is a SearchCriteria object; the return value of searchObjects() is a
SearchResult object. Thus, the SOAP service classes in the webservices package can use the
parent class’s methods, in combination with their own method specializations, to transform the
incoming HTTP requests to equivalent Java method invocations that can be passed on to domain
objects in the bean package.

Once the results of the search have been obtained from the back-end data sources, the domain
objects’ toXML() methods are applied to return XML-encoded responses to the SOAP service
classes in the webservices package. There, the service classes can forward these responses to the
SOAP server, which, in turn, forwards these as strings to the SOAP client.

22

The SOAP API provides a throttling mechanism that is similar to that described above for the
Java API. In the SOAP API, this is achieved by using the XML Linking Language (XLink),
which effectively provides a way of embedding “pointers” in the XML output, thus reducing the
amount of information returned. As with the Java API, all attributes represented by simple data
types (i.e., numbers and strings) are included directly in the SOAP output. More complex data
types, such as structured objects and arrays, are returned as Xlinks providing URLs where the
data can be fetched recursively.

Two additional parameters can be included in the SOAP request, however, which specify that
the XML-encoded response should also expand either all or only selected Xlinks. These
additional parameters are returnHeavyXML, which takes the values 0/1, and fillInObjects, which
takes a list of comma-separated arguments specifying the Xlink tags that should be expanded.
The returnHeavyXML, when set to true, opens up all of the embedded Xlinks one level deep.
Detailed illustrations on how to use these parameters are provided in the SOAP API examples
section (Section 1.5).

1.3.3 The HTTP Interface
The Hypertext Transfer Protocol (HTTP) provides a non-programming interface for

accessing caBIO data. Using the HTTP interface does not require any additional software other
than a web browser such as Internet Explorer or Netscape Communicator. Like the SOAP API,
the HTTP interface uses the domain objects in the Object Layer of the caBIO n-tier model to
communicate with the back-end data sources. The HTTP interface forwards its requests as URLs
to a Java servlet running in the Presentation Layer, called getXML. The getXML servlet is
defined in caBIO’s servlet package, and has methods that receive requests from HTTP clients,
forward messages to the respective domain objects for processing, and return the results as
XML-encoded responses to the HTTP clients.

The HTTP request parameters correspond to methods in the respective SearchCriteria object
associated with the domain object being queried. One can narrow down a search by using as
many parameters as required. The XML output returned from an HTTP request is similar to the
XML output from a SOAP client request. The XML output received by the HTTP client also
embeds XLinks to limit the amount of information returned in a single response.

As with the SOAP API, the HTTP interface allows the user to further expand these XLinks
by using returnHeavyXML and fillInObjects as additional parameters in the HTTP request. The
number of top-level objects returned can also be controlled by specifying values for StartAt and
EndAt in the HTTP request or, alternatively, by using the ResultCount parameter. Details and
examples of using the HTTP interface are given in the HTTP interface discussion in Section 1.6.

23

1.4 The caBIO Java API
The caBIO Java API provides an enhanced object-oriented development environment for

bioinformatics researchers, along with access to customized data sources for plumbing the
molecular basis of cancer and manipulating clinical data. The data sources include many of the
NCICB databases specially curated for cancer research, as well as many of the public databases
at NCBI, EMBL, and others. These data sources are described in more detail in the caBIO Data
Sources section (Section 1.7). Table 1.4.1 lists some of the Java packages contained in the API,
along with a brief description of their functions.

Package name Description
gov.nih.nci.caBIO.bean Object representations of bioinformatic concepts and

entities, such as Gene, Chromosome, Library, etc.
gov.nih.nci.caBIO.db Data access objects interfacing to the data sources
gov.nih.nci.caBIO.evs Object representations of EVS concepts and entities,

including Concept, Metaphrase, and SemanticType.
gov.nih.nci.caBIO.manager Object manager classes to support RMI on the server.
gov.nih.nci.caBIO.net Proxy manager classes to support RMI on the client –

these objects encapsulate the network protocols used by
the domain objects to communicate with the server, and
thus abstract RMI implementations away from the user.

gov.nih.nci.caBIO.servlet Classes supporting JSP pages in the Presentation Layer;
encapsulates the caBIO servlet implementations.

gov.nih.nci.caBIO.util Classes supporting XML-encoding and other types of
serialization; includes the DOM parser and Scalable
Vector Graphics (SVG) pathway wrappers.

gov.nih.nci.caBIO.util.das Classes providing access to the Distributed Annotation
Server at UCSC. The classes in this package were
auto-generated from the DAS DTD’s using the Sun
JAXB "xjc" tool.

gov.nih.nci.caBIO.webservices Classes implementing the SOAP services in the
Presentation Layer.

Table 1.4.1. Packages included in the caBIO Java API.

The caBIO objects in the bean package — also referred to as the caBIO domain objects
simulate the behavior and relationships of actual bioinformatic components such as genes,
chromosomes, sequences, libraries, clones, ontologies, etc. They provide access to a variety of
bioinformatic data sources including Unigene, LocusLink, Homologene, GoldenPath, and
NCICB’s CGAP (Cancer Genome Anatomy Project) data repositories. Hence, a gene can get its
ESTs, SNPs, or clones; an SNP can provide access to the TraceFiles that were used to identify it;
and a chromosome can report the taxon in which it is defined.

Java applications can access the caBIO data sources directly through these domain objects;
the network details of communication to the data servers are abstracted away from the developer
by the supporting packages in Table 1.4.1. Thus, the developers need not deal with issues such
as RMI and can instead concentrate on the biological problems at hand.

The implementation of a separate data layer allows the domain objects to act independently
of the actual data storage facilities. This allows the data layer to migrate as necessary to increase

24

performance or provide new data stores, without impact to the application programs. In
particular, the Data Access Objects (DAOs) in the db package enable platform independent
persistence of these domain objects, and the relational mappings provided by the DAOs are
optimized for the data queries presented by the domain objects.

performance or provide new data stores, without impact to the application programs. In
particular, the Data Access Objects (DAOs) in the db package enable platform independent
persistence of these domain objects, and the relational mappings provided by the DAOs are
optimized for the data queries presented by the domain objects.

Another important feature of the caBIO data access objects is their ability to cache and
manage large amounts of data. Coupled with the throttling mechanisms deployed to control the
flow of data through the system, this design provides optimal response time to all users of the
system.

Another important feature of the caBIO data access objects is their ability to cache and
manage large amounts of data. Coupled with the throttling mechanisms deployed to control the
flow of data through the system, this design provides optimal response time to all users of the
system.

The caBIO domain object classes are what most developers will use to access the information
available from the caBIO servers. These domain objects are available as Java beans in the
caBIO jar file that is downloaded with the caBIO installation. In most cases, the developer need
not look beyond the caBIO bean package to accomplish his or her goals.

The caBIO domain object classes are what most developers will use to access the information
available from the caBIO servers. These domain objects are available as Java beans in the
caBIO jar file that is downloaded with the caBIO installation. In most cases, the developer need
not look beyond the caBIO bean package to accomplish his or her goals.

RMI
Java Apps

 Domain

Objects

Data
Layer

Object
Layer

Data
Access
Objects

Object
Managers

Figure 1.4.1. The caBIO Java API Figure 1.4.1. The caBIO Java API
More ambitious applications may require adapting and extending the basic caBIO platform,

and/or installing the data sources as a local resource. The entire caBIO source code is available
for download.

More ambitious applications may require adapting and extending the basic caBIO platform,
and/or installing the data sources as a local resource. The entire caBIO source code is available
for download.

As an example of the types of applications that can be built using these development tools,
visit the CMAP

As an example of the types of applications that can be built using these development tools,
visit the CMAP website, which is implemented using the caBIO objects described in this manual.

1.4.1 Installing the caBIO Java API
The caBIO Java API requires JDK 1.3.1 or higher. If JDK is not already installed in your

system, follow the instructions from the Java installation and tutorial website for details on
installing JDK.

The caBIO Java API can be downloaded from the caBIO technical resources website. After
filling in your user name, institution, and email address, you are given the option of downloading
either the caBIO binary jar file directly or the zipped caBIO_Demo. This discussion assumes you
have downloaded the Demo package.

Unzip these files into a working directory of your choice; for the purposes of this discussion
we will assume you are using c:\caBIO. Examine the file structure in your newly created
directory. In addition to the top-level files, you will find several subdirectories. The directory
named jars contains the caBIO Java archive, caBIO.jar, along with the other following jar files:

25

http://cmap.nci.nih.gov/
http://cmap.nci.nih.gov/
http://developer.java.sun.com/developer/onlineTraining/new2java/gettingstartedjava.html
http://ncicb.nci.nih.gov/core/caBIO/technical_resources/core_jar

• xerces.jar (the Apache Xerces-J XML parser)
• jaxp-api.jar (the Sun API for XML processing)
• jaxb-rt-1.0-ea.jar (the Sun architecture for XML binding)
• crimson.jar (the Apache Crimson Java XML parser)
• soap.jar (Apache SOAP)

1.4.2 Defining the ClassPath
In order to compile and/or execute caBIO applications, the Java compiler and runtime

environments must be able to locate the caBIO class definitions as well as those for the classes
in the additional jar files. This can be accomplished in three ways: (1) you can use a compile tool
such as ant; (2) you can use the scripts provided with the caBIO_Demo download (.bat for
Windows and .sh for Unix); or (3) you can set the CLASSPATH environment variable directly.

The first two methods are preferable, as hardcoding the locations of java archive files in your
environment can create problems with versioning. Instructions for using the ant utility are
included in the readme file that accompanies the distribution.

The two script files contained in the caBIO_Demo distribution are compile_caBIO.* and
run_caBIO.* The compilation script explicitly specifies the classpath as an argument to the javac
compiler. The execution script also specifies the classpath, and in addition, specifies the
java.security file using the –D define flag. If you plan to use either of these batch files, ensure
that the classpaths they specify concur with your installation of the corresponding jar files.

To set the CLASSPATH environment variable directly, Windows 98 users should modify the
autoexec.bat file by adding the following (single) line:
CLASSPATH=%CLASSPATH%;c:\cabio\jars\xerces.jar;c:\cabio\jars\caBIO.jar;c:\cabio\jars\c
rimson.jar;c:\cabio\jars\soap.jar;c:\cabio\jars\jaxp.jar;c:\cabio\jars\jaxb-rt-1.0-
ea.jar;.

Note that this works only if you have previously defined the CLASSPATH; if not, you must use:
Set CLASSPATH=c:\cabio\jars\... instead of CLASSPATH=%CLASSPATH%;c:\cabio\jars\...

Users of Windows NT and Windows 2000 can enter this information directly, by clicking on
My Computer Properties, and selecting the Advanced tab, which brings up a dialog for editing
your environment variables.

1.4.3 Compiling and Running the GeneDemo Program
The javaDemos directory contains both the source code as well as the executable class for a

Java program called GeneDemo.java. Using the .bat file on Windows machines, you can now
compile the demo by typing:

compile_caBIO.bat GeneDemo.java

at the command line in a DOS shell. Alternatively, if you have defined the classpath
environment variable, you can just use

javac GeneDemo.java

This will reproduce the java class file named GeneDemo.class, which you can then execute by
typing:

java –Djava.security.policy=java.policy GeneDemo

26

http://xml.apache.org/xerces-j/index.html
http://java.sun.com/xml/jaxp/index.html
http://java.sun.com/xml/jaxb/index.html
http://xml.apache.org/crimson/index.html
http://xml.apache.org/soap/index.html
http://jakarta.apache.org/ant

The –D flag defining the security policy is provided to the RMISecurityManager class, which
requires that you specify a security policy at runtime. The policies defined in the java.policy file
protect your system — not the caBIO server — and you are free to edit these as you see fit. For
example, a policy file granting full access permissions to everyone would contain the text:

grant {
 permission java.security.AllPermission;
};

By default, the policy file that you downloaded grants all permissions. The commented out
section is an example of alternative settings you may wish to use. The following screen shot
captures the first page of output that results from executing the GeneDemo.class file:

1.4.4 Troubleshooting
The first place to look for errors is in the CLASSPATH definition; verify that all of the

required jar files are present and under the correct subdirectories. It is also possible that you
have installed everything correctly but that the executable has hit a firewall in trying to access
the caBIO data services. For example, if you see the first line of output:

Running the main of GeneDemo

followed by the error message:
Proxy unable to contact Gene manager! Connection refused to host:...

then you have hit a firewall on your system and need to ask your system administrator to open
the ports that the caBIO data services are using. Open another shell window and run the netstat
system utility (while simultaneously running GeneDemo) to identify these ports.

A second problem, which can produce similar error messages like:
Proxy unable to contact Core manager! Connection refused to host:...,

can arise if you have:

(1) redefined the java.policy file, and/or

27

(2) installed the cabio.jar file in some location other than the default configuration.

In this case, the program will get past the Gene manager and produce the first few lines of output
before running into trouble. To test this, redefine the java.policy file to grant all permissions (as
outlined in the previous subsection), and rerun the program. If this solves the problem, then you
will have established that the Core manager class (defined in caBIO.jar) was not able to locate
the java.policy file. If you are not comfortable with using the open security policy, then you will
need to reconfigure your setup so that the policy file and cabio.jar file have the following
organization:

..\caBIO\
java.policy
jars\

cabio.jar

1.4.5 Understanding the GeneDemo Program
The most important method — indeed the paradigmatic operation — on a caBIO object is the

search method. Corresponding to each domain object is a searchCriteria object that can be
deployed to retrieve objects of that type which satisfy user-specified criteria. For example, to
obtain information about a particular gene we would:

1. Instantiate a new Gene object (e.g., myGene).

2. Instantiate a new GeneSearchCriteria object (e.g., criteria).

3. Set the attributes of the GeneSearchCriteria to limit the search.

4. Call the Gene’s search method with the GeneSearchCriteria object as the argument.

This approach is used in GeneDemo.java to retrieve all instances of Gene objects whose
symbols match the string “PTEN.” Specifically, the setSymbol() method of the criteria object is
first applied, and a subsequent call to myGene.search(criteria) is then executed. Note that the
return result needs to be typecast to Gene[], as the SearchResult object’s method getResultSet()
returns a generic container.

The Gene object in this example and, more generally, every caBIO domain object, should be
viewed as a “factory” that enables us to procure a collection of caBIO objects of that same type.
Reviewing the steps outlined above, we can generalize the manufacturing process as follows:

1. Instantiate a new domain object of the desired type.

2. Instantiate a new SearchCriteria to be associated with that domain object, and set the
attributes of that criteria object so as to limit the search.

3. Execute the domain object’s search() method on that SearchCriteria, and store the results
in a generic SearchResult object.

4. Invoke the getResultSet() method on the SearchResult object and typecast its return value
to an array of the same type as the original domain object.

In this example, the search finds an array of genes, and the code then explores the features of
each one in turn. Simple features whose values are just strings or numbers are printed directly to
the screen. These include attributes like the gene’s name, title, OMIM id, Unigene cluster id,

28

LocusLink id, and organism abbreviation. More complex features represent embedded objects or
arrays of simple elements or objects, and must be explored recursively.

For example, the gene’s getReferenceSequences() method returns an array of sequences, and
the features of each Sequence object are explored in turn. Similarly, the gene’s getDbCrossRefs()
method returns a hashtable or associative array of key/value pairs. The keys are stored in a Java
enumeration variable and used to access successive element values. In contrast, the gene’s
getExpressionFeature() method does not return an array, but an ExpressionFeature object. In
this case, the object’s getExpressedInOrgans() method produces an array of string values that is
iterated over.

The previous section described the caBIO architecture and the underlying design that drives
the logistics of the search() methods and interactions between the domain objects, object
managers, SearchCriteria, and SearchResult objects. The GeneDemo.java program demonstrates
how these objects and devices can be deployed to extract information from the caBIO data
sources.

29

1.5 The caBIO SOAP API

1.5.1 Introduction to SOAP
The Simple Object Access Protocol (SOAP) is a bridging technology that allows

heterogeneous peers on diverse platforms to exchange structured data over the Internet via XML
and HTTP. The caBIO project provides a SOAP interface for non-Java applications. In this
model the client issues XML-encoded requests specifying the desired data services to the
appropriate host address and port, and in exchange, receives XML-encoded responses.

The SOAP engine operates on three types of specification:

• The SOAP message’s envelope specifications, which define the content type, intended
recipient of the message, and whether it is optional or mandatory;

• The encoding rules, which specify the serialization method to be used in the exchange of
application-specific data; and

• The RPC, which defines the conventions used in remote procedure calls and responses.

The simple example of a SOAP message below requests the price of apples from a host,
www.foodprices.com:

POST /InPrices HTTP/1.1
Host: www.dictionary.com
Content-Type: application/soap; charset=utf-8
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http:/
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

/www.w3.org/2001/12/soap-envelope"

<soap:Body xmlns:m="http://www.dictionary.com " />
<m:GetDefinition>

<m:Item>Aperture</m:Item>
</m:GetDefinition>

</soap:Body>
</soap:Envelope>

In this example, the SOAP envelope specifications include only the content type
(application/soap) and the recipient (www.dictionary.com). There is no mention of whether
the message is mandatory or optional. The encoding rules are defined as
"http://www.w3.org/2001/12/soap-encoding”. The RPC call specification is defined in the
<soap:Body > element, where it requests the price of apples from the server.

1.5.2 The SOAP API and caBIO
As depicted in Figure 1.5.1, all of the caBIO data sources — including the internal databases

as well as other NCI resources and external websites — are at the back-end of the caBIO
infrastructure. The Object Layer consists of a set of object managers, data access objects, and a
collection of classes representing biological and bioinformatic entities. All of the objects in this
layer are implemented as Java bean classes and, as such, can be accessed by a Java program
using remote method invocation (RMI).

The Presentation Layer provides a more generic interface to these same data for non-Java
applications written in languages such as Perl, C/C++, Python, etc. caBIO uses the open source

30

http://www.w3.org/TR/SOAP/

Apache SOAP package, in combination with appropriate serialization methods for the Java
beans, to achieve an application-independent interface. As described in the preceding general
discussion of the caBIO API’s (Section 1.3

Apache SOAP package, in combination with appropriate serialization methods for the Java
beans, to achieve an application-independent interface. As described in the preceding general
discussion of the caBIO API’s (Section 1.3), all of the caBIO objects are “XML Aware” and are
capable of serializing themselves to XML for transport.

SOAP::lite

Data
Layer

Object
Layer

Domain
Objects

Presentation
Layer

SOAP client

SOAP client

Data
Access
Objects

Object
Managers RMI

SOAP
Engine

Python

C

. . .

Perl

Servlet
Container

Web Server

Figure 1.5.1. The caBIO architecture and the SOAP interface.

caBIO’s SOAP API can be used as an interface to any language-specific application. In
theory, the remote application could in fact communicate directly with the SOAP server without
any additional layers of interfacing. In practice, however, this would involve a good deal of
effort, as it requires explicitly wrapping each request in a SOAP envelope, parsing the return
message types, and network programming to establish and maintain reliable connections.

Most developers instead prefer to install a SOAP client package to handle the
implementation of the envelope and the resolution of the SOAP types. A number of SOAP
packages catering to different programming languages are available at Soapware and at
http://www.w3.org/TR/SOAP/.

One such package is SOAP::LITE for Perl, which can be freely downloaded from the
ActiveState website. The PERL example discussed below utilizes SOAP::Lite, which
implements both a client- and a server-side SOAP implementation. Win 32 machines can
download the .exe file from ActiveState and simply follow the accompanying installation
instructions. The installer will automatically add the <perl soap:lite installation-directory>/bin to
the system PATH.

1.5.3 Using the SOAP API with Perl and SOAP::LITE

1.5.3.1 Accessing the caBIO SOAP Services
The first thing you will need to determine before connecting to a SOAP server is the set of

callable services it provides. To see the list of SOAP services provided by the NCICB server,
point your browser to:

http://cabio.nci.nih.gov/soap/services/index.html

31

http://www.soapware.org/
http://www.w3.org/TR/SOAP/
http://www.activestate.com/
http://cabio.nci.nih.gov/soap/services/index.html

The links displayed on the deployed services page are known as the Uniform Resource Name
(URN) identifiers for the information resources. Additional information about a deployed service
can be obtained by clicking on the URN for that service. This will open a Deployed Service
Information page, providing details on its properties. For example, clicking on the urn:nci-gene-
service link displays the ID, Provider Type, Provider Class, and Methods properties.

The most important properties are ID and Methods. ID is the Uniform resource Identifier
(URI) for the SOAP service; Methods enumerates the methods available from the service. For
example, some of the methods provided by GeneService are getGenes, getTaxons, getClones,
getSequences, and getPathways.

The caBIO SOAP services are implemented by the classes defined in the caBIO webservices
package. You can get the details on these classes from the JavaDoc pages for that package. The
caBIO architecture includes about thirty “service” classes, which implement communication
between the caBIO domain objects and SOAP client applications via XML documents. Table
1.5.1 lists several of the most frequently used services and the java bean domain objects they
provide access to. The example Perl application that follows demonstrates how information
about a specific Gene object can be selectively extracted using SOAP::Lite.

SOAP service name caBIO bean class
GeneService gov.nih.nci.caBIO.bean.Gene
LibraryService gov.nih.nci.caBIO.bean.Library
TargetService gov.nih.nci.caBIO.bean.Target
AgentService gov.nih.nci.caBIO.bean.Agent
PathwayService gov.nih.nci.caBIO.bean.Pathway
ClinicalTrialProtocolService gov.nih.nci.caBIO.bean.ClinicalTrialProtocol
GenericObjectService gov.nih.nci.caBIO.bean

Table 1.5.1 Frequently used caBIO SOAP services.

1.5.3.2 Accessing the GeneService using SOAP::Lite
SOAP::Lite is a collection of Perl modules that provide a simple interface to both the client

and the server. Each SOAP::Lite method can be used for both setting and retrieving values. In
the absence of any arguments, the current value is retrieved. When parameters are provided, the
new value specified in the arguments will be assigned to the object referred to in the method. In
the example, that follows, we will retrieve information about a specific gene, using the gene’s
symbol (PTEN) to select it.

Three mandatory arguments for accessing any SOAP service are:

• server – <the NCICB server URL>

• port – < the NCICB server listening port> e.g., 8080, 5080

• method – The requested SOAP service, e.g., GeneService

These arguments can be specified programmatically inside the Perl script, or at runtime on the
command line. For example, given a Perl script called geneClient.pl, we can invoke it as follows:

geneClient.pl cabio.nci.nih.gov 5080 getGenes -symbol PTEN

32

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/webservices/package-summary.html

Here, cabio.nci.nih.gov is the IP address of the SOAP server, 5080 is the listening port, and
getGenes is the method of the GeneService we wish to access. The last argument is a specific
parameter to getGenes, specifying that we would like to retrieve a Gene object whose symbol
matches the string PTEN. Alternatively, we might specify these parameters in the Perl script
itself, as:

$server = "cabio.nci.nih.gov"; # set the server variable
$port = "5080"; # set the port variable
$method = "getGenes"; # set the method variable
my %searchRec=(); # declare a hashtable to store the search options
$searchRec{"symbol"} = "pTEN"; # initialize the symbol field in searchRec

Using either approach, our Perl script will still need to include additional variables specifying the
URI for the SOAP service we wish to access, and a proxy path for message routing:
$URI='urn:nci-gene-service'; # set the URI variable to GeneService
$PROXY_PATH='/soap/servlet/rpcrouter'; # set the PROXY_PATH to (RPC|Message) Router

The proxy path specifies the endpoint service address and loads the required module. It is
required for dispatching SOAP calls. SOAP::Lite provides explicit functions for these
specifications: uri()and proxy(). Given the above $variable definitions, we can apply these as:

$s = SOAP::Lite; # declare a SOAP::Lite variable
-> uri($URI); # set the SOAP::Lite uri()
-> proxy("http://$server:$port$PROXY_PATH"); # set the SOAP::Lite proxy()

1.5.3.3 Issuing a SOAP::Lite Service Request
Thus far, we have set up everything we need for the connection: the IP address for the SOAP

server, the listening port for results, the URI for the SOAP service we wish to access, and a
proxy path for message routing. We have also created an internal hashtable to store <tag/value>
pairs for the search fields we will use; we have stored the pair <”symbol,” “PTEN”> in that
table, and we have assigned the string getGenes to the method variable. All that is left now is to
declare a variable to store results in, and a way of actually invoking the desired method. We can do this as
follows:

$som=$s->$method(SOAP::Data->type(map => \%searchRec));

In general SOAP::Data is used to specify a value, a name, a type, a URI, or attributes for
SOAP elements. In this example we have used it to specify that the argument, searchRec, is a
map type, since it is essentially a two-dimensional array. Alternatively, we might have specified
value(), name(), uri(), or attr() in place of type().

The return object $som is a SOAP::SOM object and can be used to access the returned
values. If a fault element is in the message, $som->fault will be defined. Additional information,
including faultdetail, faultcode, and faultstring, is also available from the $som object. If the
request was successful, the response XML can be retrieved and saved by calling $som->result as
follows:

33

$xmldoc = $som->result; # get the result
open (OUT, ">pTEN.XML"); # open a file for output
print OUT $xmldoc; # write output to the file
print $xmldoc; # write to standard output

1.5.3.4 The complete geneClient.pl Perl Script:
use SOAP::Lite;
use HTML::Entities;
$URI='urn:nci-gene-service';
$PROXY_PATH='/soap/servlet/rpcrouter';
my %searchRec=();

$server = "cabio.nci.nih.gov";
$port = "5080";
$method = "getGenes";
$searchRec{"symbol"} = "pTEN";
$s = SOAP::Lite

-> uri($URI)
-> proxy("http://$server:$port$PROXY_PATH");

make service request
$som=$s->$method(SOAP::Data->type(map => \%searchRec));
interpret result
if ($som->fault) {

print "FAULT ENCOUNTERED!\nfaultcode:\t" . $som->faultcode .
"\nfaultstring:\t" .

$som->faultstring . "\n";
} else {

$xmldoc = $som->result;
open (OUT, ">pTEN.xml");
print OUT $xmldoc;
print $xmldoc;
close OUT;

}

1.5.3.5 The XML Output and the Additional Arguments
The resulting XML output of this script contains information relating to the selected gene

whose symbol was specified as “PTEN.” Simple features like the gene’s name, title, and cross-
referencing IDs into other databases are represented directly, as they are simple text strings. But
by default, more complex return values that reference other caBIO objects such as Chromosome,
ExpressionFeature, and Taxon are encoded as XLinks only.

There are two ways to retrieve further information about these embedded XLinks. The simple
approach of editing your perl scripts to recursively embed the Xlink:Href URIs and retrieving
the output may become tedious when those queries in turn return additional XLinks.

Alternatively, if you know in advance which Xlinks you will need to expand, you can do so
on the first pass by adding two more arguments: fillInObjects and returnHeavyXML. The
fillInObjects option accepts comma-separated arguments, which specify which tags are to be
opened up further. The corresponding XLinks are then “filled in” with their XML content one
level deep. The returnHeavyXML option opens all the embedded XLinks one level deep.

For example, suppose you want to open up the XLinks corresponding only to
ExpressionFeature and MapLocation. The syntax for this would be:

34

$searchRec{"fillInObjects"} = "ExpressionFeature,MapLocation";

where $searchRec is the hashtable variable used to store different arguments to map to the SOAP
service. Alternatively, if you want to “fill up” all the first-level XLinks in the resulting XML,
use:

$searchRec{"returnHeavyXML"}="true" ;

You can also use these options at the command line, e.g.:
geneClient.pl cabio.nci.nih.gov 5080 getGenes -symbol PTEN –fillInObjects
ExpressionFeature,MapLocation

A number of additional Perl script examples are included in the caBIO_Demo.zip file,
available at the caBIO technical resources website. Download this demonstration file, and
explore the PerlSOAP subdirectory. To get a complete list of the options available for the
various services and methods, refer to APIs for the classes implementing these services, on the
NCICB Webservices Java Doc pages.

35

http://ncicb.nci.nih.gov/core/caBIO/technical_resources/core_jar
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/webservices/package-frame.html

1.6 The caBIO HTTP Interface 1.6 The caBIO HTTP Interface

1.6.1 Overview 1.6.1 Overview
The Hypertext Transfer Protocol (HTTPThe Hypertext Transfer Protocol (HTTP) is a generic, stateless application protocol for

distributed, collaborative information systems. The HTTP uses the concept of reference provided
by the Uniform Resource Identifier (URI) as a location (URL) or name (URN) for indicating the
resource on which a method is to be applied. The HTTP is said to be connectionless because
once the server has responded to the single request, the connection is dropped. Because an HTTP
server treats each request as unprecedented, it is also called a stateless protocol.

The n-tier model of the caBIO architecture in Figure 1.6.1 emphasizes those components in
the Presentation Layer that implement the HTTP interface. The HTTP interface utilizes web
browsers such as Netscape 4+ and IE 4+. HTTP requests, which are issued as URLs on the
client browsers, are processed by Java servlets on the caBIO web server, and forwarded as
messages via RMI to the Object Layer.

Inside the Object Layer, the domain objects and their associated infrastructure classes
(SearchCriteria and SearchResult objects) are used to register the requests and hold the data as it
is fetched from the Data Layer via the data access objects. These results are then XML-encoded
by the domain objects’ toXML() methods and returned to the servlets in the Presentation Layer
via RMI.

Internet
Explorer

Netscape
RMI Object

Managers
Data

Access
Objects

Other
browsers

Object
Layer

Domain
Objects

e 1.6.1. The caBIO HTTP interface.
Non-programm orm the XML-encoded HTTP response using X LT. XSL

(extensible style sh
(XSLT) is a langu
the XSL to transfo

The caBIO obj
on a single HTTP
items returned. Fo
potentially retrieve
the onslaught of da
request is enforced

Web Server

Servlet
Container

Presentation
Layer

Figur
ers can transf

eet language) is a language for expressing style sheets; XSL

age for transforming XML documents using XSL. An examp
rm an XML document is provided at the end of this section.

ects use two devices to limit the amount of information that
request. The first of these is a throttling mechanism that limi
r example, a request to retrieve all known genes on the huma
 over 30,000 gene records. To protect naïve users as well as
ta that would ensue, a (re-settable) default maximum of 1,000
.

Data
Layer

SL/XS

 Transformations
le of how to use

 will be returned
ts the number of
n genome could

 the system from
 records per data

36

http://www.w3.org/Protocols/
http://www.w3.org/Protocols/
http://wp.netscape.com/download/
http://www.microsoft.com/windows/ie/default.asp
http://www.w3.org/Style/XSL/

The second device limits the extent of data that will be contained in a single record, and
serves as a safeguard against infinite recursion. Many of the data objects contain or otherwise
entail “embedded” objects. For example, a Gene references the set of Sequences it encodes, and
each of those sequences in turn references the Gene. Clearly, allowing each of these objects to
return a full encoding of their nested references would be disastrous.

Generally, it is unlikely that the user will want access to all of the detailed information
associated with each retrieved object, but would rather selectively specify where to drill down.
The XML linking language (XLink) provides just the type of mechanism that is needed to
address this concern.

The caBIO web server returns only those features that can be expressed as simple data types
(i.e., strings, numbers) in the top-level encoding. Other features, such as embedded objects and
arrays or other data structures, are returned as Xlinks, which specify the URL to use in a
subsequent request in order to retrieve that information. As described below, however, it is also
possible to selectively expand these Xlinks in the initial HTTP request using additional
arguments.

1.6.2 Using the HTTP Interface
Requests sent by the client via HTTP are processed by a servlet called getXML residing on

the caBIO server. getXML anticipates a list of parameters, which specify the type of object to
retrieve along with additional search criteria to narrow the search. For example, the following
HTTP request retrieves all genes having “PTEN” as their symbol:

http://cabio.nci.nih.gov:5080/CORE/GetXML?operation=Gene&Symbol=PTEN

The most important parameter here is operation, which specifies the class name of the type
of domain object being requested; all other parameters are defined according to this first one. In
particular, only the Gene objects have a Symbol field. Thus, if the parameters had been:

operation=Chromosome&Symbol=PTEN

an error would be produced. Referring back to Figure 1.6.1, recall that each HTTP request is
effectively forwarded to the appropriate objects in the Object Layer. Accordingly, any additional
criteria the user may wish to specify to narrow the search must be understandable by the
receiving objects in the Object Layer.

To see the list of services that can be invoked through the HTTP interface, refer to the Java
Docs page for the webservices package. To see the list of class names that can serve as values for
the operation parameter, refer to the Java Docs page for the bean package. Example class names
are: Gene, Library, Chromosome, Sequence, etc. To get a list of the additional parameters that
can follow a given operation request, access the associated SearchCriteria object’s Set methods
in the bean package. Each domain object (Xxx) in the bean package has an associated search
criteria object, named XxxSearchCriteria.

For example, the Chromosome domain object has an associated ChromosomeSearchCriteria
object. While there is no explicit association between the two objects, the search criteria object is
designed for use as the single argument to the domain object’s search() method. The idea is to
set a few attributes in the search criteria so as to limit the search, and to subsequently invoke the
domain object’s search method on that search criteria object.

37

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/webservices/package-summary.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/webservices/package-summary.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/package-summary.html

Thus, we must consult the search criteria’s Set methods to determine what attributes are
settable. The ChromosomeSearchCriteria has only two such named methods: SetName() and
SetId(). Accordingly, if we are using Chromosome as the value for operation, then the only
additional legitimate parameters are name= and id=. In other words, the additional allowed
parameters for the HTTP request are defined by removing the “set” prefix from the search
criteria’s methods.

In summary, the operation parameter is mandatory; its value must be the class name of a
domain object in the gov.nih.nci.caBIO.bean package. All of the parameters to GetXML are case-
sensitive — using “Operation” instead of “operation” in the HTTP request will produce an error.
The class names used as values are also case-sensitive. For example, to get one or more genes,
you must use operation=Gene – not operation=gene. Finally, in addition to specifying an
operation= parameter, each HTTP request must include at least one search criterion that can be
associated with the requested object type. The allowed criteria for a given object type are
determined by the associated SearchCriteria object’s Set methods. Refer to the Java Docs to find
the domain object class names and their corresponding SearchCriteria’s methods.

1.6.3 Drilling Down Through Xlinks
The output returned by the caBIO server in response to an HTTP request is formatted XML

with embedded XLinks. There are two special request parameters that can further expand these
XLinks in the XML output. The returnHeavyXML parameter will open up all of the embedded
XLinks one level deep. For example, to search for genes whose symbol match “PTEN” and open
up all Xlinks, you would use:

operation=Gene&symbol=PTEN&returnHeavyXML=1

The other parameter, fillInObjects, “fills” in only those XLinks whose tags are specified in a
comma-separated list. Thus, to open up only the GoOntology and ExpressionFeature tags in the
XML output, you would use:

operation=Gene&symbol=pTEN&fillInObjects=GoOntology,ExpressionFeature

1.6.4 Controlling the Number of Items Returned
It is also possible to fine-tune the default “throttling” mechanism defining the number of

results returned on any single request. For example, assuming the search request yields, say, 500
results, specifying: resultStart=450, will return only the last 50. Similarly, one can use
resultCount=50 to get back only the first 50:

operation=Gene&symbol=pTEN&resultCount=50

Alternatively, you can use the parameter ReturnCount to specify the number of results to
return, without concern for starting or ending indices. By default, the return results start at index
1 and the maximum number returned is 1,000.

1.6.5 Specifying the IP Address and Port in the URL
To use the HTTP API you need additional information such as the NCICB server and

listening port for HTTP requests. The complete syntax of the HTTP request is:
http://<server:port>/CORE/GetXML?<Argument list>

38

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/package-summary.html

where <server:port> is the caBIO web server and port number reserved for HTTP requests.
These server addresses and port numbers change from time to time; check with the NCICB help
desk for the current specifications.

1.6.6 Applying XSL to XML Output
Some browsers (e.g., Netscape) cannot process XML-formatted documents, and on these

platforms you will need to transform the XML response to an HTML document. As mentioned in
the foregoing section, XSL/XSLT can be used for these purposes.

One option is to save the XML output you receive to a file and subsequently apply an
appropriate XSL style sheet. Alternatively, you can use the ApplyXSLT servlet running on the
caBIO web server to transform the XML output in real time.

ApplyXSLT requires two parameters: mURL and xslURL. mURL is a “modified” URL in
which the original HTTP request is modified such that all instances of “?” are replaced with “$”,
and all ampersands (“&”) are replaced with “@”. For example, the original HTTP request

http://cabio.nci.nih.gov/CORE/GetXML?operation=Gene&Symbol=vegf

would now become:
http:// cabio.nci.nih.gov/CORE/GetXML$operation=Gene@Symbol=vegf

These modifications allow the new URL to be embedded inside a second URL. This is
needed because the HTTP request will now be sent directly to the ApplyXSLT servlet, with the
original request as an argument to that servlet. ApplyXSLT will then issue the original HTTP
request, receive the results on behalf of the client, and transform the results using the stylesheet
specified in the xslURL parameter. The complete syntax of using ApplyXSLT is:

http://<server:port>/CORE/ApplyXSLT?mURL=<mURL>&xslURL=<xslURL>

For example:
http://cabio.nci.nih.gov:5080/CORE/ApplyXSLT?mURL=http://cabio.nci.nih.gov:50
80/CORE/GetXML$operation=Gene@Symbol=pten&xslURL=http://cabio.nci.nih.gov/COR
E//xsl/cabio-beans.xsl

39

http://cabio.nci.nih.gov:5080/CORE/ApplyXSLT?mURL=http://cabio.nci.nih.gov:5080/CORE/GetXML$operation=Gene@Symbol=pten&xslURL=http://cabio.nci.nih.gov/CORE//xsl/cabio-beans.xsl
http://cabio.nci.nih.gov:5080/CORE/ApplyXSLT?mURL=http://cabio.nci.nih.gov:5080/CORE/GetXML$operation=Gene@Symbol=pten&xslURL=http://cabio.nci.nih.gov/CORE//xsl/cabio-beans.xsl
http://cabio.nci.nih.gov:5080/CORE/ApplyXSLT?mURL=http://cabio.nci.nih.gov:5080/CORE/GetXML$operation=Gene@Symbol=pten&xslURL=http://cabio.nci.nih.gov/CORE//xsl/cabio-beans.xsl

1.7 caBIO Data Sources
The caBIO application programming interfaces were developed primarily in response to the

need for programmatic access to the information at several NCI websites, including CGAP,
CMAP, and GAI. While all of these sites provide information and search tools relevant to the
molecular analysis of cancer, each organizes its information somewhat differently, emphasizing
for example, gene sequences, clone libraries, chromosome maps, DNA microarray data, or
clinical trials data. The primary operation in the caBIO APIs involves defining an object type of
interest along with a set of search criteria for that object type, and retrieving all instances of that
object that satisfy the defined search criteria.

For example, the goal might be to find all genes that are expressed in bone marrow cells,
where those genes are also known to participate in apoptosis. Using the Java API, the user would
first instantiate a Gene object and a GeneSearchCriteria object. The methods
setFunctionalPathway() and setTissueType(), associated with GeneSearchCriteria objects, could
then be applied to define the search criteria. A subsequent call to myGene.search(myCriteria)
would then retrieve all genes known to satisfy these criteria.

While this information is in theory available from multiple public sites, the number of links
to traverse, and the extent of collation that would have to be performed is daunting. The CGAP,
CMAP, and GAI websites have distilled this information from both internal and public
databases, and the caBIO data warehouses have optimized it for access with respect to the types
of queries defined in the caBIO APIs. In this section we discuss the external and internal data
sources for caBIO and how the information these sources provide can be accessed via caBIO
objects.

The caBIO objects fall roughly into two categories: those that pertain to clinical trials data,
and those that are relevant to basic research. The two groups are not mutually exclusive, as some
objects such as Gene, Organ, and Histopathology occur in both. In particular, the Gene object
functions as a central hub of the basic research objects and, accordingly, serves as a portal
between the two relatively disjunct groups.

Before discussing the specific data sources whose information is made available via the
caBIO objects, it is useful to consider the types of data that might be needed to investigate the
molecular basis of cancer. The challenges are to discover which chromosome aberrations, DNA
mutations, and single nucleotide polymorphisms may lead to or be associated with neoplasm
formations and/or cancerous preconditions, as well as what genetic idiosyncracies may effect
variable responses to treatment.

Clearly, sequence information must be available, including whole genomic sequences,
expressed mRNA sequences, expressed sequence tags (ESTs), and single nucleotide
polymorphisms (SNPs). Moreover, this sequence information must be available from multiple
sources, including both normal and diseased tissue, so as to allow statistical analysis and
identification of significant correlations. But it is not enough to provide the sequence data alone,
devoid of any source information. In particular, it must be possible to identify the tissue types,
histological states, and preparation methods of the samples, as well as the protocols used in
generating the libraries from which the sequences were extracted. As depicted in Figure 1.7.1,
Clone objects can be accessed directly from either a Gene, Sequence, or SNP object. The Clone
object, in turn, provides access to information about the protocol and preparation methods for its
associated Library, as well as access to TraceFile objects.

40

http://cgap.nci.nih.gov/
http://cmap.nci.nih.gov/
http://lpg.nci.nih.gov/

GeneHomolog

Taxon

Chromosome

ExpressionExperiment

ExpressionFeature

Sequence GoOntology

Pathway

Protein

Clone SNP

Gene

Histopathology

ProteinHomolog

Tissue
ReadSequence

Protocol

TraceFile Library

MapLocation

Organ

Figure 1.7.1. caBIO objects supporting basic research. Figure 1.7.1. caBIO objects supporting basic research.

Figure 1.7.1 is a very reduced view of the entire collection of caBIO objects, showing only
those objects that are most relevant to basic research. The links between objects in Figure 1.7.1
reflect only the get methods defined for those objects. For example, a Library object has
getTissue() and getProtocol() methods; neither the Tissue nor Protocol objects have a
getLibrary() method, however, so the links are unidirectional. Each object also provides access
to a wealth of additional information not shown in Figure 1.7.1.

Figure 1.7.1 is a very reduced view of the entire collection of caBIO objects, showing only
those objects that are most relevant to basic research. The links between objects in Figure 1.7.1
reflect only the get methods defined for those objects. For example, a Library object has
getTissue() and getProtocol() methods; neither the Tissue nor Protocol objects have a
getLibrary() method, however, so the links are unidirectional. Each object also provides access
to a wealth of additional information not shown in Figure 1.7.1.

Thus, an application that attempts to identify new SNPs might use the Clone object to gain
access to TraceFiles. Alternatively, an application that attempts to correlate known SNPs with
disease states might use the Clone objects to filter SNPs according to tissue type, preparation
method, and library protocol.

Thus, an application that attempts to identify new SNPs might use the Clone object to gain
access to TraceFiles. Alternatively, an application that attempts to correlate known SNPs with
disease states might use the Clone objects to filter SNPs according to tissue type, preparation
method, and library protocol.

Chromosome and map location information are important to studies that focus on the study
of oncology at the cytogenetic level. Given a chromosome that is known to have aberrations
associated with cancer, this information can be used to drill down to the molecular level using
the caBIO objects and appropriate search criteria on the chromosomes and map locations of
genes and sequences.

Chromosome and map location information are important to studies that focus on the study
of oncology at the cytogenetic level. Given a chromosome that is known to have aberrations
associated with cancer, this information can be used to drill down to the molecular level using
the caBIO objects and appropriate search criteria on the chromosomes and map locations of
genes and sequences.

Another common focus is on proteomic pathways, for example cell cycle control. The caBIO
Pathway objects provide methods to selectively retrieve the genes occuring on that pathway,
according to whether they are mutated, overexpressed, or underexpressed, etc. Thus, starting
from a Pathway that is hypothesized to be involved in some disease etiology, it is possible to first
retrieve the associated Gene objects and, subsequently, explore the features of each Gene,
including its chromosome and map locations, variable expression levels (via
ExpressionExperiment objects), and its position in the Gene Ontology Consortium

Another common focus is on proteomic pathways, for example cell cycle control. The caBIO
Pathway objects provide methods to selectively retrieve the genes occuring on that pathway,
according to whether they are mutated, overexpressed, or underexpressed, etc. Thus, starting
from a Pathway that is hypothesized to be involved in some disease etiology, it is possible to first
retrieve the associated Gene objects and, subsequently, explore the features of each Gene,
including its chromosome and map locations, variable expression levels (via
ExpressionExperiment objects), and its position in the Gene Ontology Consortium hierarchies
(via its GoOntology objects).

41

http://www.geneontology.org/
http://www.geneontology.org/

With the wealth of bioinformatic data that has emerged over the past decade, the need for
translational research that can deliver these advances in knowledge and understanding to the
clinical setting has become increasingly critical. Thus, another important type of information that
must be available is clinical data.

With the wealth of bioinformatic data that has emerged over the past decade, the need for
translational research that can deliver these advances in knowledge and understanding to the
clinical setting has become increasingly critical. Thus, another important type of information that
must be available is clinical data.

The caBIO objects that are geared to clinical research form a clique or subgrouping among
the larger set of objects and are displayed separately in Figure 1.7.2. Objects that appear in both
“sub-networks” include the Gene, Organ, and Histopathology objects.

The caBIO objects that are geared to clinical research form a clique or subgrouping among
the larger set of objects and are displayed separately in Figure 1.7.2. Objects that appear in both
“sub-networks” include the Gene, Organ, and Histopathology objects.

ProtocolAssociation

Agent

Target

ClinicalTrialProtocol

Disease

Histopathology

Anomaly Organ

Gene CMAPOntology

Figure 1.7.2. caBIO objects supporting clinical research. Figure 1.7.2. caBIO objects supporting clinical research.

The remainder of this section discusses the external and internal data sources whose
information is used to populate the objects in Figures 1.7.1 and 1.7.2. While the caBIO data are
extracted from many sources that include information from a wide variety of species, we
emphasize that only genomic data pertaining to human and mouse are available from caBIO.
caBIO provides access to curated data from multiple sources, including:

The remainder of this section discusses the external and internal data sources whose
information is used to populate the objects in Figures 1.7.1 and 1.7.2. While the caBIO data are
extracted from many sources that include information from a wide variety of species, we
emphasize that only genomic data pertaining to human and mouse are available from caBIO.
caBIO provides access to curated data from multiple sources, including:

• The NCBI UniGene• The NCBI UniGene database [1 – 3]. Unigene provides a non-redundant partitioning of the
genetic sequences contained in GenBank into gene clusters. Each such cluster has a unique
UniGene ID and a list of the mRNA and EST sequences that are subsumed by that cluster.
Related information stored with the cluster includes tissue types in which the gene has been
expressed, mapping information, and the associated LocusLink, OMIM, and HomoloGene
IDs, thus providing access to related information in those NCBI databases as well. Because
the information in UniGene is centered around genes, access to Unigene is provided via the
caBIO Gene objects. Specifically, the method getClusterId() associated with a Gene object
can be used to fetch the gene’s UniGene ID. Similarly, the database IDs for the NCBI OMIM
and LocusLink databases can be obtained using the getOMIMId() and getLocusLinkId()
methods. While there is no explicit caBIO object corresponding to a Unigene cluster, all of
the information associated with the cluster is available directly via the caBIO Gene object’s
methods. For example:

42

http://www.ncbi.nlm.nih.gov/UniGene/
http://www.ncbi.nlm.nih.gov/UniGene/

- getGenomicSequences() returns an array containing the mRNA and EST sequences
contained in the Unigene cluster;

- getExpressionFeature() returns an ExpressionFeature object, which can in turn be
queried to obtain a list of the tissues in which the gene is expressed;

- getGeneHomologs() returns an array of GeneHomolog objects for the gene;

- getChromosome() returns the Chromosome on which this gene occurs;

- getMapLocation() returns an array of MapLocation objects associated with the gene.

In all of the above methods, the returned value is itself a caBIO object. Thus, further
information associated with the returned object can in turn be accessed using that object’s
methods.

The information stored with an ExpressionFeature object requires a bit more explanation,
as it is not actually a copy of what is stored in Unigene. caBIO’s expression information is
instead derived as the result of passing the Unigene free text information through a controlled
vocabulary that defines only about 55 tissue types. Using an ontology to match the Unigene
terms to terms in the caBIO vocabulary, the result is generally a condensed version, as
several terms in the Unigene data may map to the same more general term in the vocabulary.

• NCBI’s LocusLink database [4, 5]. LocusLink contains curated sequence and descriptive
information associated with a gene. Each entry includes information about the gene’s
nomenclature, aliases, sequence accession numbers, phenotypes, UniGene cluster IDs,
OMIM IDs, gene homologies, associated diseases, map locations, and a list of related terms
in the Gene Ontology Consortium’s ontology. Sequence accessions include a subset of
GenBank accessions for a locus, as well as the NCBI Reference Sequence. As mentioned
above, a caBIO Gene object has explicit methods for retrieving the gene’s associated
LocusLink, OMIM, and Unigene IDs. The methods to access the gene’s reference sequences
and aliases are getReferenceSequences() and getAliases(), respectively. Related terms in the
GO ontology are retrieved using the gene’s getGoOntologies() method (see discussion
below). Finally, a Gene object’s getLocusLinkSummary() method returns a free-text
paragraph summarizing gene function.

• The Gene Ontology Consortium [6, 7]. The Gene Ontology Consortium provides a
controlled vocabulary for the description of molecular functions, biological processes, and
cellular components of gene products. The terms provided by the consortium define the
recognized attributes of gene products and facilitate uniform queries across collaborating
databases. The caBIO Gene object’s getGoOntologies() method returns a list of GoOntology
objects for the gene, which can in turn be queried to examine relationships among genes and
other terms in the gene ontology.

In general, each gene is associated with one or more biological processes, and each of
these processes may in turn be associated with many genes. In addition, the GO ontologies
define many parent/child relationships among terms. For example, a branch of the ontology
tree under biological_process contains the term cell cycle control, which in turn
bifurcates into the “child” terms cell cycle arrest, cell cycle checkpoint,
control of mitosis, etc. caBIO’s GoOntology objects capture these relations via the
getChildRelationships(), getParentRelationships(), getOntologyHomoSapienGenes(), and

43

http://www.ncbi.nlm.nih.gov/LocusLink/
http://www.geneontology.org/
http://www.geneontology.org/

getOntologyMouseGenes() methods. Thus, it is possible to start with a Gene object and
retrieve its GoOntology objects, and, from there, traverse a network of related genes via the
links deriving from the ontological terms.

As mentioned above, caBIO does not extract ontology terms directly from the Gene
Ontology Consortium but, instead, extracts those terms stored with the LocusLink entry for
that gene.

• The HomoloGene database [8]. HomoloGene is an NCBI resource for curated and calculated
gene homologs. The caBIO data sources capture only the calculated homologs stored by
HomoloGene. These calculated homologs are the result of nucleotide sequence comparisons
performed between each pair of organisms represented in UniGene clusters. The caBIO Gene
method to access the gene’s homologs is getGeneHomologs(), and returns an array of
GeneHomolog objects.

• BioCarta pathways. BioCarta and its Proteomic Pathway Project (P3) provides detailed
graphical renderings of pathway information concerning adhesion, apoptosis, cell activation,
cell signalling, cell cycle regulation, cytokines/chemokines, developmental biology,
hematopoeisis, immunology, metabolism, and neuroscience. NCI’s CMAP website captures
pathway information from BioCarta, and transforms the downloaded image data into
Scalable Vector Graphics (SVG) representations that support interactive manipulation of the
online images. The CMAP website displays BioCarta pathways selected by the user and
provides options for highlighting anomalies, which include under- or overexpressed genes as
well as mutations.

The caBIO Pathway objects make this same information available via their associated
methods, which include: getGenes(), getExpressedGenes(), getMutatedGenes(),
getOverExpressedGenes(), getUnderExpressedGenes(), and getTargetGenes(). The pathway
diagram is also available, as an XML document (getPathwayDiagram()) or in SVG format
(getSvgPathwayDiagram()). The expression and mutation information that is associated with
the Pathway object is derived from EST and SAGE expression data that have been culled by
the CGAP project. Information about target genes is taken from data stored with CMAP.

• The Distributed Annotation System (DAS) [9] at UCSC. DAS is a client-server system that
allows a single client machine to collect genome annotation information from multiple
distant servers, collate the information, and display it in a single view, with little or no
coordination among the information providers. DAS/1 servers are currently running at
WormBase, FlyBase, Ensembl, TIGR, and UCSC. caBIO provides access to the DAS
information at UCSC, via the caBIO objects defined in the gov.nih.nci.caBIO.util.das
package.

The starting point for any DAS search is one of the three DAS search criteria objects:
DasTypeSearchCriteria, DasDnaSearchCriteria, and DasGffFeatureSearchCriteria. The
first of these can be used to obtain an array of annotation types, the second fetches DNA
sequences, and the last retrieves annotations satisfying the specified criteria. Further
documentation on these search criteria objects and their affiliated domain objects can be
found in the JavaDocs pages for the das package.

• The Cancer Genome Anatomy Project [10 – 13] (CGAP). The NCI CGAP website provides
a collection of gene expression profiles of normal, pre-cancer, and cancer cells taken from

44

http://www.ncbi.nlm.nih.gov/HomoloGene/
http://www.biocarta.com/
http://www.w3.org/TR/SVG/
http://biodas.org/
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/package-summary.html
http://cgap.nci.nih.gov/

various tissues. The CGAP interface allows the user to browse these profiles by various
search criteria, including histology type, tissue type, library protocol, and sample preparation
methods. The goal at NCI is to exploit such expression profile information for the
advancement of improved detection, diagnosis, and treatment for the cancer patient.
Researchers have access to all CGAP data and biological resources for human and mouse,
including ESTs, gene expression patterns, SNPs, cluster assemblies, and cytogenetic
information.

The CGAP website provides a powerful set of interactive data-mining tools to explore
these data, and the caBIO project was initially conceived as a programmatic interface to these
tools and data. Accordingly, most of the data that are available from CGAP can also be
accessed through the caBIO objects. Exceptions are those data sets having proprietary
restrictions, such as the Mitleman Chromosome Aberration database.

The caBIO ExpressionExperiment object provides a generic interface to the CGAP
expression data, with methods including: getType(), getExpressables(), getExpressionLevel(),
and getHistopathologies(). The type information returned by the first method is simply a
string with the value “SAGE” or “EST.” Expressable is a Java interface that is currently
implemented only by the caBIO Gene objects. Thus the getExpressables() method of an
ExpressionExperiment returns the set of Gene objects whose expression levels were detected.
getExpressionLevel() returns an array of ExpressionLevel objects, where each of these
objects in turn provides information about the observed expression ratio for that gene.
getHistopathologies() returns an array of Histopathology objects. A Histopathology object
provides information about the organ and disease where the pathology was observed, along
with information about the type of anomaly (mutation or variation in expression) associated
with the histopathology.

Two subclasses, ESTExperiment and SAGEExperiment, inherit their methods from the
ExpressionExperiment object and provide access to CGAP’s EST and SAGE data,
respectively. The immediate source for EST library metadata (who made it, how many
sequences were submitted, tissue, histology, other keywords, etc.) is a custom import from
NCBI's dbEST database. Most of this information is also available to the public through an
HTTP request at NCBI's UniGene pages, e.g.:

http://www.ncbi.nlm.nih.gov/UniGene/lib.cgi?ORG=Hs&LID=289

Assignment of the individual ESTs to genes is obtained from the standard UniGene
dump. CGAP’s SAGE data are derived from a collaboration between NCI and Duke
University and are based on new algorithms for mapping sequences to tags [13].

The caBIO Gene object provides access to these expression objects via its overloaded
getExpression() method. With no arguments, this method returns an array of all SAGE and
EST expression experiments for the gene. If a type argument (“SAGE” or “EST”) is
provided, then only the experiments of that type are returned. Finally, it is also possible to
specify the particular Organ and Disease of interest.

CGAP also provides access to lists of sequence-verified human and mouse cDNA
IMAGE clones supplied by Invitrogen. Starting with a caBIO Gene object, you can get the
list of Clones encoding that gene via the getSequenceVerifiedClones() method. From the
Clone object, one can retrieve the Library that contains that clone using getLibrary().

45

http://www.ncbi.nlm.nih.gov/UniGene/lib.cgi?ORG=Hs&LID=289
http://www.invitrogen.com/content.cfm?pageid=3&nv=1&ix=1

Specific information about the library can then be extracted using the methods
getCloneProducer(), getCloneVector(), getDescription(), getKeyword(), getLabHost(), etc.

• The CGAP Genetic Annotation Initiative [14] (GAI). GAI is an NCI research program to
explore and apply technology for identification and characterization of genetic variation in
genes important in cancer. The GAI utilizes data-mining to identify “candidate” variation
sites from publicly available DNA sequences, as well as laboratory methods to search for
variations in cancer-related genes. All GAI candidate, validated, and confirmed genetic
variants are available directly from the GAI website, and all validated SNPs have been
submitted to the NCBI dbSNP database as well.

SNPs identified by the GAI project can be accessed using caBIO SNP objects. The SNP
object provides access to the Clones in which the SNP was observed via the getClones()
method. The offset of this SNP in the parent sequence is available from the getOffset()
method. The two most common base substitutions occurring at the site are extracted using
getBase1() and getBase2(). The getScore() method returns the confidence score for the
predicted SNP, and getTracefiles() provides access to the trace files used to identify the site
as an SNP. The sequencing trace files used by GAI are imported from Washington
University.

• The NCI Cancer Therapy Evaluation Program [15] (CTEP). CTEP funds an extensive
national program of basic and clinical research to evaluate new anti-cancer agents, with a
particular emphasis on translational research to elucidate molecular targets and drug
mechanisms. In response to this emergent need for translational research, there has been a
groundswell of translational support tools defining controlled vocabularies and registered
terminologies so as to enhance electronic data exchange in areas that have heretofore been
relatively non-computational. The caBIO trials data is updated with new CTEP data on a
quarterly basis, and many of the objects in Figure 1.7.2 are designed to support translational
research.

For example, a caBIO Target object represents a molecule of special diagnostic or
therapeutic interest for cancer research, and an Anomaly object is an observed deviation in
the structure or expression of a Target. An Agent is a drug or other intervention that is
effective in the presence of one or more specific Targets. The ClinicalTrialProtocol object
organizes administrative information pertaining to that protocol and has a getAgents()
method for programmatic access to the specifc therapies deployed.

• NCI’s Cancer Molecular Analysis Project (CMAP) [16] website is powered by caBIO, and
makes extensive use of the objects in both Figures 1.7.1 and 1.7.2. The goal of CMAP is to
enable researchers to identify and evaluate molecular targets in cancer. Towards this goal,
CMAP provides four interfaces.

The CMAP Profile Query tool finds genes with the highest or lowest expression levels
(using SAGE and microarray data) for a given tissue and histology. Selecting a gene from the
resulting table then leads to a Gene Info page, providing information about cytogenetic
location, chromosome aberrations, protein similarities, curated and computed orthologs, and
sequence-verified as well as full-length MGC clones, along with links to various other
databases. The CMAP ontology can be accessed through the caBIO CMAPOntology object.

46

http://gai.nci.nih.gov/
http://www.genome.wustl.edu/est/esthmpg.html
http://www.genome.wustl.edu/est/esthmpg.html
http://ctep.cancer.gov/
http://cmap.nci.nih.gov/

CMAP’s Molecular Targets interface organizes collections of genes by pathways and by
ontology. Two ontologies are available: (1) the GO ontology described above, and (2) the
CMAP ontology described here. The CMAP ontology relates functional classifications to
molecular targets and agents. For example, selecting “angiogenesis” as the functional term
brings up KDR, a type III receptor tyrosine kinase, and a list of agents for KDR. Selecting the
target then produces a Gene Info page providing information about cytogenetic location,
chromosome aberrations, protein similarities, curated and computed orthologs, and sequence-
verified as well as full-length MGC clones, along with links to various other databases. The
CMAP ontology can be accessed through the caBIO CMAPOntology object.

CMAP’s AgentSearch tool allows the researcher to search for drug therapies by name
(with wildcard matching), with the option of restricting the search to agents that are either
associated with a term in the CMAPOntology or registered with a CTEP protocol. If the
agent is associated with CTEP protocols, a table is presented on the Agent Info page, listing
the title of each protocol and a link to its associated documentation. Selecting an entry from
this table in turn leads to the Therapeutic Trials Info page for that CTEP protocol.

With the exception of the Mitelman Chromosome Aberration data, all of the information
available through CGAP is also accessible programmatically through the caBIO objects in
Figures 1.7.1 and 1.7.2.

• The NCI Enterprise Vocabulary Services [17] (EVS) The EVS is a part of the caCORE
project, and is described in the next chapter. The EVS provides NCI with services and
resources for controlled biomedical vocabularies. The EVS includes the NCI Thesaurus and
the NCI Metathesaurus. The Thesaurus is composed of over 20,000 concepts represented by
about 80,000 terms. The Thesaurus is organized into 17 hierarchical trees covering areas
such as Neoplasms, Drugs, Anatomy, Genes, Proteins, and Techniques. These terms are
deployed by NCI in its automated systems for uses such as keywording and database coding.

The NCI Metathesaurus maps terms from one standard vocabulary to another, facilitating
collaboration, data sharing, and data pooling for clinical trials and scientific databases. The
Metathesaurus is based on the NLM’s Unified Medical Language System (UMLS) and is
composed of over 70 biomedical vocabularies.

Integration of the EVS Vocabulary models and the caBIO domain objects is in progress,
with plans to fully specify and implement formally defined relationships between the
vocabulary model’s semantic concepts and the caBIO objects. Figure 1.7.3 illustrates the
three Java objects defined in a programmtic interface to the EVS. These classes are
implemented in a separate java package (gov.nih.nci.caBIO.evs) with an interface to the
caBIO domain objects (implemented in gov.nih.nci.caBIO.bean) via the Agent class.

47

http://ncicb.nci.nih.gov/core/EVS

Agent

getEVSId()

SemanticType

getID()
getName()

ConceptSearch

getAllSemanticTypes()

ConceptSearchCriteria

setSearchTerm()
setSemanticTypeID()

Concept

getName()
getSemanticTypes()
getSources()
getSynonyms()

Metaphrase

getSearchTerm()
getSemanticTypes()
getSource()
getSynonyms()

gov.nih.nci.caBIO.bean gov.nih.nci.caBIO.evs

Figure 1.7.3. The caBIO Java EVS package. Figure 1.7.3. The caBIO Java EVS package.

48

1.8 References
1. Schuler (1997). Pieces of the puzzle: expressed sequence tags and the catalog of human

genes. J Mol Med 75(10):694–698.
2. Schuler et al. (1996). A gene map of the human genome. Science 274: 540–546.
3. Boguski & Schuler (1995). ESTablishing a human transcript map. Nature Genetics 10: 369–

371.
4. Pruitt KD, and Maglott DR (2001). RefSeq and LocusLink: NCBI gene-centered resources.

Nucleic Acids Res 29(1):137–140.
5. Pruitt KD, Katz KS, Sicotte H, and Maglott DR (2000). Introducing RefSeq and LocusLink:

curated human genome resources at the NCBI. Trends Genet.16(1):44–47.
6. The Gene Ontology Consortium. (2000). Gene ontology: tool for the unification of biology.

Nature Genetics 25:25–29.
7. The Gene Ontology Consortium. (2001). Creating the gene ontology resource: design and

implementation. Genome Research 11:1425–1433.
8. Zhang, Schwartz, Wagner, and Miller (2000). A Greedy algorithm for aligning DNA

sequences, J. Comp. Biol. 7(1-2):203–14.
9. Dowell RD, Jokerst RM, Day A, Eddy SR, Stein L. The Distributed Annotation System.

BMC Bioinformatics. 2001;2(1):7
10. Strausberg RL (2001). The Cancer Genome Anatomy Project: new resources for reading the

molecular signatures of cancer. J Pathol, 195:31–40.
11. Strausberg RL, Buetow KH, Emmert-Buck M, and Klausner R. (2000). The Cancer Genome

Anatomy Project: building an annotated gene index. Trends in Genetics, 16:103–106.
12. Strausberg RL (1999). The Cancer Genome Anatomy Project: building a new information

and technology platform for cancer research. In: Molecular Pathology of Early Cancer
(Srivastava, S., Henson, D.E., Gazdar, A., eds. IOS Press, 365–370.

13. Boon K, Osorio EC, Greenhut SF, Schaefer CF, Shoemaker J, Polyak K, Morin PJ, Buetow
KH, Strausberg RL, De Souza SJ, Riggins GJ (2002). An anatomy of normal and malignant
gene expression. Proc Natl Acad Sci U S A 2002 Jul 15, in press.

14. Clifford R, Edmonson M, Hu Y, Nguyen C, Scherpbier T, and Buetow KH (2000).
Expression-based genetic/physical maps of single-nucleotide polymorphisms identified by
the cancer genome anatomy project. Genome Res 10(8):1259–65.

15. Ansher SS, Scharf R (2001). The Cancer Therapy Evaluation Program (CTEP) at the
National Cancer Institute: industry collaborations in new agent development. Ann N Y Acad
Sci. 949:333-40.

16. Buetow KH, Klausner RD, Fine H, Kaplan R, Singer DS, Strausberg RL (2002). Cancer
Molecular Analysis Project: Weaving a rich cancer research tapestry.Cancer Cell 1(4):315-8.

17. Hartel, F.W. and de Coronado, S (2002). Information Standards within NCI. In: Cancer
Informatics: Essential Technologies for Clinical Trials. J. S. Silva, M. J. Ball, C. G. Chute, J.
V. Douglas, C. Langlotz, J. Niland and W Scherlis, eds. Springer-Verlag.

49

1.9 The Domain Object Catalog

1.9.1 gov.nih.nci.caBIO.bean
1.9.1.1.1 Agent
A therapeutic agent (drug, intervention therapy) used in a clinical trial protocol.
Application: used primarily by CMAP and EVS applications.
Related domain objects: ClinicalTrialProtocol, Target
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.2 Anomaly
An irregularity in either the expression of a gene or its structure (i.e., a mutation).
Application: defined and used by the CMAP project.
Related domain objects: Histopathology, Target
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.3 Chromosome
An object representing a specific chromosome for a specific taxon; provides access to all known
genes contained in the chromosome and to the taxon.
Application: used by CMAP and other applications to reason about the molecular basis of cancer.
Related domain objects: Gene, Taxon
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.4 ClinicalTrialProtocol
The protocol associated with a clinical trial; organizes administrative information about the trial
such as Organization ID, participants, phase, etc., and provides access to the administered
Agents.
Application: used primarily by CMAP.
Related domain objects: Agent, ProtocolAssociation
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.5 Clone
An object used to hold information pertaining to I.M.A.G.E. clones; provides access to sequence
information, associated trace files, and the clone’s library.
Application: The caBIO Clone data are imported from the CGAP website databases.
Related domain objects: Sequence, Library, TraceFile, SNP
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.6 CMAPOntology
An object providing entry to the CMAP gene ontology, which categorizes genes by function;
provides access to gene objects corresponding to the ontological term, as well as to ancestor and
descendant terms in the ontology tree.
Application: defined and used by CMAP applications.

50

http://ncicb.nci.nih.gov/content/coreftp/caBIOa_JavaDocs/gov/nih/nci/caBIO/bean/Agent.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Anomaly.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Chromosome.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/ClinicalTrialProtocol.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Clone.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/CMAPOntology.html

Related domain objects: CMAPOntologyRelationship, Gene
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable, Ontologable

1.9.1.1.7 CMAPOntologyRelationship
An object specifying a child or parent relationship between CMAPOntology objects.
Application: used and defined by CMAP applications.
Related domain objects: CMAPOntology
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable, Relationable

1.9.1.1.8 ConceptSearch
Represents a searchable concept term in a controlled vocabulary occurring in the NCI
Metathesaurus; used to find synonym or semantic types for the concept of interest. Related
domain objects are defined in the evs package.
Application: used primarily by EVS applications.
Related domain objects: gov.nih.nci.caBIO.evs.SemanticType
Extends: java.lang.Object

1.9.1.1.9 ConsensusSequence
A specialization of the Sequence class; represents the consensus of a set of contigs, which it also
provides access to.
Application: used by the GAI project to identify SNPs.
Related domain objects: Contig, Gene, Protein, Clone, ExpressionMeasurement
Extends: Sequence
Implements: XMLInterface, java.io.Serializable

1.9.1.1.10 Contig
One of the set of overlapping sequence fragments used to assemble a consensus sequence, which
it also provides access to.
Application: Used by the GAI project to identify SNPs.
Related domain objects: Sequence, ConsensusSequence
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.11 Disease
Disease objects specify a disease name and ID; disease objects also provide access to:
ontological relations to other diseases; clinical trial protocols treating the disease; and specific
histologies associated with instances of the disease.
Application: used by the CMAP project.
Related domain objects: ClinicalTrialProtocol, Histopathology, DiseaseRelationship
Extends java.lang.Object
Implements: XMLInterface, java.io.Serializable, Ontologable

1.9.1.1.12 DiseaseRelationship
An object specifying a child or parent relationship between Disease objects.
Application: used by the CMAP project.

51

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Ontologable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/CMAPOntologyRelationship.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Relationable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/ConceptSearch.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/ConsensusSequence.html
http://ncicb-prot.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Sequence.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Contig.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Disease.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Ontologable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/DiseaseRelationship.html

Related domain objects: Disease
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable, Relationable

1.9.1.1.13 ESTExperiment
An object representing data from an expression experiment using expressed sequence tags.
Application: caBIO’s EST experiment data are downloaded from the CGAP databases.
Related domain objects: ExpressionExperiment, Gene, Histopathology
Extends: ExpressionExperiment
Implements: XMLInterface, java.io.Serializable

1.9.1.1.14 ExpressionExperiment
A virtual class defining the methods and attributes shared by various types of expression
experiments, including ESTExperiment and SAGEExperiment objects.
Related domain objects: Gene, Histopathology, ESTExperiment, SAGEExperiment
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.15 ExpressionFeature
Associated with a Gene object through the gene’s method getExpressionFeature(); provides
access to the list of organs where the gene is known to be expressed.
Application: Expression information for a gene is extracted from the CGAP databases, which are
based on the information in Unigene (see Section 1.7).
Related domain objects: Organ, Gene.
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.16 ExpressionMeasurement
An object representing a structure that is capable of measuring the absolute or relative amount of
a given compound.
Related domain objects: Gene, Sequence
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.17 ExpressionMeasurementArray
An array of ExpressionMeasurement objects.
Related domain objects: Gene, Sequence
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.18 Gene
Gene objects are the effective portal to most of the genomic information provided by the caBIO
data services; organs, diseases, chromosomes, pathways, sequence data, and expression
experiments are among the many objects accessible via a gene.
Related domain objects: ExpressionFeature, Organ, Disease, Chromosome, Taxon, Sequence,
GeneAlias, GeneHomolog, MapLocation, Protein, SNP, Target, ExpressionMeasurement,
Pathway, GoOntology

52

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Relationable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/ ESTExperiment.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/ ExpressionExperiment.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/ ExpressionExperiment.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/ ExpressionFeature.html
http://ncicb-prot.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Gene.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/ ExpressionMeasurement.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/ ExpressionMeasurementArray.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Gene.html

Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable, Expressable

1.9.1.1.19 GeneAlias
An alternative name for a gene; provides descriptive information about the gene (as it is known
by this alias), as well as access to the Gene object it refers to.
Related Domain Objects: Gene
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.20 GeneHomolog
Defined only in relation to another Gene object of interest, the GeneHomolog in caBIO is the
functional equivalent of that gene in another taxon (i.e., its ortholog). The GeneHomolog is a
specialization of the parent Gene object; in addition to all of the methods provided by the gene
interface, the homolog object provides the percent of sequence similarity of the homolog to the
related gene of interest.
Related domain objects: Gene, ExpressionFeature, Organ, Disease, Chromosome, Taxon,
Sequence, GeneAlias, GeneHomolog, MapLocation, Protein, SNP, Target,
ExpressionMeasurement, Pathway, GoOntology
Extends: Gene
Implements: XMLInterface, java.io.Serializable, Expressable

1.9.1.1.21 GoOntology
An object providing entry to a Gene object’s position in the Gene Ontology Consortium’s
controlled vocabularies, as recorded by LocusLink; provides access to gene objects
corresponding to the ontological term, as well as to ancestor and descendant terms in the
ontology tree.
Related domain objects: Gene, GoOntologyRelationship
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable, Ontologable

1.9.1.1.22 GoOntologyRelationship
An object specifying a child or parent relationship between GoOntology objects.
Related domain objects: GoOntology
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable, Relationable

1.9.1.1.23 Histopathology
An object representing anatomical changes in a diseased tissue sample associated with an
expression experiment; captures the relationship between organ and disease.
Application: used by the CMAP project.
Related domain objects: Anomaly, Organ, Disease, ExpressionExperiment, ESTExperiment,
SAGEExperiment
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

53

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Expressable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/GeneAlias.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/GeneHomolog.html
http://ncicb-prot.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Gene.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Expressable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/GoOntology.html
http://www.geneontology.org/
http://www.ncbi.nlm.nih.gov/LocusLink/
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Ontologable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/GoOntologyRelationship.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Relationable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Histopathology.html

1.9.1.1.24 Library
An object representing a CGAP library; provides access to information about: the tissue sample
and its method of preparation, the library protocol that was used, the clones contained in the
library, and the sequence information derived from the library.
Application: The caBIO libaries are extracted from the CGAP databases.
Related domain objects: Clone, Sequence, Tissue, Protocol
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.25 MapLocation
Associated with a Gene object, the physical map location of the gene.
Related domain objects: Chromosome, Gene, Taxon.
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.26 Organ
A representation of an organ whose name occurs in a controlled vocabulary; provides access to
any Histopathology objects for the organ, and, because it is “ontolog-able,” provides access to its
ancestral and descendant terms in the vocabulary.
Related domain objects: Histopathology, OrganRelationship
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable, Ontologable

1.9.1.1.27 OrganRelationship
An object specifying a child or parent relationship between Organ objects.
Related domain objects: Organ
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable, Relationable

1.9.1.1.28 Pathway
An object representation of a molecular/cellular pathway compiled by BioCarta. Pathways are
associated with specific Taxon objects, and contain multiple Gene objects, which may be Targets
for treatment.
Related domain objects: Gene, Taxon, Target.
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.29 Protein
An object representation of a protein; provides access to the encoding gene via its GenBank ID,
the taxon in which this instance of the protein occurs, and references to homologous proteins in
other species.
Related domain objects: Gene, ProteinHomolog, Taxon.
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

54

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Library.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/MapLocation .html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Organ.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Ontologable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/OrganRelationship.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Relationable.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Pathway.html
http://www.biocarta.com/
http://www.buginword.com
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Protein.html
http://www.ncbi.nlm.nih.gov/GenBank/

1.9.1.1.30 ProteinHomolog
Defined only in relation to another Protein object of interest, the ProteinHomolog in caBIO is the
functional equivalent of that protein in another taxon (i.e., its ortholog). The ProteinHomolog is a
specialization of the parent Protein object; in addition to the methods provided by the protein
interface, the Homolog object provides the percent of sequence similarity of the homolog to the
related protein of interest.
Related domain objects: Gene, Protein, Taxon.
Extends: Protein
Implements: XMLInterface, java.io.Serializable

1.9.1.1.31 Protocol
An object representation of the protocol used in assembling a clone library.
Application:
Related domain objects: Library
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.32 ProtocolAssociation
An association class relating between ClinicalTrialProtocols to Diseases.
Application: used primarily by the CMAP project.
Related domain objects: ConceptSearch, ClinicalTrialProtocol, Disease
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.33 ReadSequence
The output of a TraceFile object, an ASCII representation of the nucleotide sequence; a read
sequence is created by running PHRED.
Application: the GAI project.
Related domain objects: TraceFile, SNP
Extends: Sequence
Implements: XMLInterface, java.io.Serializable

1.9.1.1.34 SAGEExperiment
A specialization of the ExpressionExperiment class, used to represent serial analysis of gene
expression (SAGE) data.
Application: The caBIO SAGE data are derived from methods developed at NCI by the CGAP
project in collaboration with Duke University.
Related domain objects: ExpressionExperiment, Gene, Histopathology
Extends: ExpressionExperiment
Implements: XMLInterface, java.io.Serializable

1.9.1.1.35 Sequence
An object representation of a gene sequence; provides access to the clones from which it was
derived, the ASCII representation of the residues it contains, and the sequence ID.
Related domain objects: Clone, Gene, Protein
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

55

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/ProteinHomolog .html
http://ncicb-prot.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Protein.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Protocol.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/ProtocolAssociation.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/ReadSequence.html
http://ncicb-prot.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Sequence.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/SAGEExperiment.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/ ExpressionExperiment.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Sequence.html

1.9.1.1.36 SNP
An object representing a Single Nucleotide Polymorphism; provides access to the clones and the
trace files from which it was identified, the two most common substitutions at that position, the
offset of the SNP in the parent sequence, and a confidence score.
Application: The SNPs provided by caBIO were identified by the GAI project.
Related domain objects: Clone, TraceFile
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.37 Target
A gene thought to be at the root of a disease etiology, and which is targeted for therapeutic
intervention in a clinical trial.
Application: defined and used by the CMAP project.
Related domain objects: Agent, Anomaly, Gene
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.38 Taxon
An object representing the various names (scientific, common, abbreviated, etc.) for a species
associated with a specific instance of a Gene, Chromosome, Pathway, Protein, or Tissue.
Related domain objects: Gene, Chromosome, Pathway, Protein, Tissue
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.39 Tissue
A group of similar cells united to perform a specific function.
Related domain objects: Disease, Organ, Protocol, Taxon
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.1.1.40 TraceFile
An object representing the recorded trace file used to identify an SNP, based on the observed
intensities for the four possible bases at each position in the sequence.
Application: All TraceFiles available through caBIO are from Washington University.
Related domain objects: Clone, ReadSequence, SNP
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.2 gov.nih.nci.caBIO.evs
1.9.2.1.1 Concept
An object representing a concept in the NCI Source vocabulary accessable through the
Metaphrase browser.
Application: used primarily by CMAP and EVS applications.
Related domain objects: SemanticType
Extends: java.lang.Object
Implements: java.io.Serializable

56

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/SNP.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Target.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Taxon.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/Tissue.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/bean/TraceFile.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/evs/Concept.html

1.9.2.1.2 Metaphrase
An object representing the NCI Metaphrase browser.
Application: used primarily by CMAP and EVS applications.
Related domain objects: SemanticType, Concept
Extends: java.lang.Object
Implements: java.io.Serializable

1.9.2.1.3 SemanticType
An object representing the semantic type of a concept in the NCI Source vocabulary.
Application: used primarily by CMAP and EVS applications.
Extends: java.lang.Object
Implements: XMLInterface, java.io.Serializable

1.9.3 gov.nih.nci.caBIO.util.das
All of the following domain objects were auto-generated from the DAS DTD. For definitions of
the classes, refer to the specifications of the Distributed Annotation Server web site. The
definitions below concern extensions to the auto-generated classes.

1.9.3.1.1 DasDnaDna
The DNA class auto-generated from the DAS DTD; modified to be serializable and to include
support for calling the sequencemanager proxy.
Extends: javax.xml.bind.MarshallableObject
Implements: javax.xml.bind.Element, java.io.Serializable
1.9.3.1.2
1.9.3.1.3 DasDnaSequence
Related domain objects: DasDnaDna
Extends: javax.xml.bind.MarshallableObject
Implements: javax.xml.bind.Element

1.9.3.1.4 DasDnaSet
Extends: javax.xml.bind.MarshallableRootElement
Implements: javax.xml.bind.Element, javax.xml.bind.RootElement

1.9.3.1.5 DasDsn
Related domain objects: DasDsnSource
Extends: javax.xml.bind.MarshallableObject
Implements: javax.xml.bind.Element

1.9.3.1.6 DasDsnDescription
Extends: javax.xml.bind.MarshallableObject
Implements: javax.xml.bind.Element

1.9.3.1.7 DasDsnSet
Extends: javax.xml.bind.MarshallableRootElement
Implements: javax.xml.bind.Element, javax.xml.bind.RootElement

57

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/evs/Concept.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/evs/Concept.html
http://www.biodas.org/documents/spec.html
http://ncicb-prot.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasDnaDna.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasDnaSequence.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasDnaSet.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasDsn.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasDsnDescription.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasDsnSet.html

1.9.3.1.8 DasDsnSource
Extends: javax.xml.bind.MarshallableObject
Implements: javax.xml.bind.Element

1.9.3.1.9 DasGff
Extends: javax.xml.bind.MarshallableObject
Implements: javax.xml.bind.Element

1.9.3.1.10 DasGffFeature
Related domain objects: DasGffMethod, DasGffType
Extends: javax.xml.bind.MarshallableObject
Implements: javax.xml.bind.Element, java.io.Serializable

1.9.3.1.11 DasGffGroup
Extends: javax.xml.bind.MarshallableObject
Implements: javax.xml.bind.Element, java.io.Serializable

1.9.3.1.12 DasGffLink
Extends: javax.xml.bind.MarshallableObject
Implements: javax.xml.bind.Element, java.io.Serializable

1.9.3.1.13 DasGffMethod
Extends: javax.xml.bind.MarshallableObject
Implements: javax.xml.bind.Element, java.io.Serializable

1.9.3.1.14 DasGffSegment
Extends: javax.xml.bind.MarshallableObject
Implements: javax.xml.bind.Element, java.io.Serializable

1.9.3.1.15 DasGffSet
Related domain objects: DasGff
Extends: javax.xml.bind.MarshallableRootElement
Implements: javax.xml.bind.Element, javax.xml.bind.RootElement

1.9.3.1.16 DasGffTarget
Extends: javax.xml.bind.MarshallableObject
Implements: javax.xml.bind.Element, java.io.Serializable

1.9.3.1.17 DasGffType
Extends: javax.xml.bind.MarshallableObject
Implements: javax.xml.bind.Element, java.io.Serializable

1.9.3.1.18 DasSegment
This class is used to specify a segment of DNA during queries to a DAS server. Segments can be
specified for Feature and Type searches. Segments are typically defined by a chromosone
identifier, starting position and ending position.

58

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasDsnSource.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasGff.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasGffFeature.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasGffGroup.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasGffLink.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasGffMethod.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasGffSegment.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasGffSet.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasGffTarget.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasGffType.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasSegment.html

Extends: java.lang.Object
Implements: java.io.Serializable

1.9.3.1.19 DasTypesGff
Related domain objects: DasTypesSegment
Extends: javax.xml.bind.MarshallableObject
Implements: javax.xml.bind.Element

1.9.3.1.20 DasTypesSegment
Extends: javax.xml.bind.MarshallableObject
Implements: javax.xml.bind.Element

1.9.3.1.21 DasTypesSet
Related domain objects: DasTypesGff
Extends: javax.xml.bind.MarshallableRootElement
Implements: javax.xml.bind.Element, javax.xml.bind.RootElement

1.9.3.1.22 DasTypesType
Extends: javax.xml.bind.MarshallableObject
Implements: javax.xml.bind.Element

59

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasTypesGff.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasTypesSegment.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasTypesSet.html
http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/gov/nih/nci/caBIO/util/das/DasTypesType.html

1.10 SearchCriteria Object Mappings
As described in Section 1.3, it is possible to set the desired attributes of one SearchCriteria

object and, subsequently, embed that object in a second SearchCriteria object using the
putSearchCriteria() method.

However, not all SearchCriteria are “compatible” with one another. Column 1 in Table A.2.1.
below lists those SearchCriteria that support the putSearchCriteria() method, and column 2 lists
the secondary SearchCriteria objects that can be provided as arguments to the first object’s
putSearchCriteria() method. This list is dynamic and new entries are added as necessary.

SearchCriteria #1 (accepts) SearchCriteria #2
AgentSearchCriteria ClinicalTrialSearchCriteria
AnomalySearchCriteria DiseaseSearchCriteria, HistopathologySearchCriteria,

TargetSearchCriteria, VocabularySearchCriteria
ChromosomeSearchCriteria GeneSearchCriteria
ClinicalTrialProtocolSearchCriteria AgentSearchCriteria, DiseaseSearchCriteria,

HistopathologySearchCriteria, OrganSearchCriteria
CloneSearchCriteria SequenceSearchCriteria, GeneSearchCriteria
ExpressionFeatureSearchCriteria GeneSearchCriteria
ExpressionMeasurementSearchCriteria ExpressionMeasurementArraySearchCriteria,

GeneSearchCriteria, SequenceSearchCriteria
GeneAliasSearchCriteria GeneSearchCriteria
GeneHomologSearchCriteria GeneSearchCriteria
GeneSearchCriteria ChromosomeSearchCriteria, CloneSearchCriteria,

ExpressionMeasurementSearchCriteria,
HistopathologySearchCriteria, OntologySearchCriteria,
OrganSearchCriteria, PathwaySearchCriteria,
SequenceSearchCriteria, TargetSearchCriteria,
TaxonSearchCriteria

GoOntologySearchCriteria GeneSearchCriteria
HistopathologySearchCriteria DiseaseSearchCriteria, OrganSearchCriteria
LibrarySearchCriteria GeneSearchCriteria, HistopathologySearchCriteria,

ProtocolSearchCriteria
MapLocationSearchCriteria GeneSearchCriteria
PathwaySearchCriteria GeneSearchCriteria, HistopathologySearchCriteria
ProteinSearchCriteria GeneSearchCriteria
SequenceSearchCriteria CloneSearchCriteria, GeneSearchCriteria,

OntologySearchCriteria
TargetSearchCriteria AnomalySearchCriteria, CMAPOntologySearchCriteria
TaxonSearchCriteria GeneSearchCriteria

Table A.2. 1. Object-specific putSearchCriteria arguments.

60

For example, the following code snippet will retrieve all pathways
containing genes whose symbols match the string “vegf”:
// define the criteria for the genes we are interested in:
GeneSearchCriteria GeneCriteria = new GeneSearchCriteria();
GeneCriteria.setSymbol("vegf");

// now define the criteria for pathways, and embed the gene criteria:
PathwaySearchCriteria PathCriteria = new PathwaySearchCriteria();
PathCriteria.PutSearchCriteria(GeneCriteria);

// create a pathway object and invoke its search method:
Pathway myPath = new Pathway();
SearchResult result = MyPath.Search(PathCriteria);
if (result != null){
 Pathway[] myPaths = (Pathway[]) result.getResultSet();

 // ... do something interesting with the paths
}

Criteria Attribute Maps

For convenience, we summarize here the object-specific settable attributes of the various
search criteria, which can be used to narrow the search for an associated class of objects. Each
of these attributes is a private data member of the class, but is settable via the set method of the
same name.

In addition to these object-specific attributes, each search criteria object also implements the
setOrderBy() method, which controls the order in which the results are returned.

AgentSearchCriteria
agentNSCNumber_Attribute java.lang.String
comment_Attribute java.lang.String
eVSId_Attribute java.lang.String
isCMAPAgent_Attribute java.lang.String
name_Attribute java.lang.String
clinicalTrialProtocolId_Attribute java.lang.String
source_Attribute java.lang.String
targetId_Attribute java.lang.String

AnomalySearchCriteria
anomalyDescription_Attribute java.lang.String
contextCode_Attribute java.lang.String
HistopathologyId_Attribute java.lang.String
organId_Attribute java.lang.String
targetId_Attribute java.lang.String

ChromosomeSearchCriteria
name_Attribute java.lang.String

ClinicalTrialProtocolSearchCriteria
agent_Attribute java.lang.String
agentId_Attribute java.lang.String
conceptId_Attribute java.lang.String
ctepName_Attribute java.lang.String

61

diseaseCategory_Attribute java.lang.String
diseaseId_Attribute java.lang.String
diseaseName_Attribute java.lang.String
imtCode_Attribute java.lang.String
leadOrganizationName_Attribute java.lang.String
leadOrganizationId_Attribute java.lang.String
nihAdminCode java.lang.String
pdqIdentifier_Attribute java.lang.String
phaseIdentifier_Attribute java.lang.String
documentNumber_Attribute java.lang.String
protocolAssociationId_Attribute java.lang.String
piName_Attribute java.lang.String
title_Attribute java.lang.String
treatmentFlag_Attribute java.lang.String

ClinicalTrialSearchCriteria
ctep_Name_Attribute java.lang.String
disease_Category_Attribute java.lang.String
disease_Name_Attribute java.lang.String
imt_Code_attribute java.lang.String
lead_Organization_attribute java.lang.String
phase_Attribute java.lang.String
protocol_Document_Number_Attribute java.lang.String
protocol_Id_Attribute java.lang.String
title_Attribute java.lang.String

CloneSearchCriteria
geneId_Attribute java.lang.String
sequenceId_Attribute java.lang.String
name_Attribute java.lang.String
snpId_Attribute java.lang.String
verified_Attribute java.lang.Boolean

CMAPOntologySearchCriteria
cMAPChildId_Attribute java.lang.String
cMAPGeneId_Attribute java.lang.String
cMAPName_Attribute java.lang.String
cMAPParentId_Attribute java.lang.String
cMAPOntology_Attribute java.lang.String
includeBoth_Attribute java.lang.String
includeParents_Attribute java.lang.String
includeChildren_Attribute java.lang.String
relationshipParentId_Attribute java.lang.String
relationshipChildId_Attribute java.lang.String
relationshipType_Attribute java.lang.String

CMAPOntologyRelationshipSearchCriteria
relationshipParentId_Attribute java.lang.String
relationshipChildId_Attribute java.lang.String

62

relationshipType_Attribute java.lang.String

ConsensusSequenceSearchCriteria
consensusSequenceType_Attribute java.lang.String
ContigId_Attribute java.lang.String
geneId_Attribute java.lang.String
proteinId_Attribute java.lang.String
refGeneId_Attribute java.lang.String

ContigSearchCriteria
sequenceId_Attribute java.lang.String
Name_attribute java.lang.String

DiseaseSearchCriteria
diseaseId_Attribute java.lang.String
histopathologyId_Attribute java.lang.String
geneId_Attribute java.lang.String
includeBoth_Attribute java.lang.String
includeChildren_Attribute java.lang.String
includeParents_Attribute java.lang.String
name_Attribute java.lang.String
relationshipChildId_Attribute java.lang.String
relationshipParentId_Attribute java.lang.String
relationshipType_attribute java.lang.String

DiseaseRelationshipSearchCriteria
relationshipChildId_Attribute java.lang.String
relationshipParentId_Attribute java.lang.String
relationshipType_attribute java.lang.String

ExpressionExperimentSearchCriteria
gene_Attribute java.lang.String
geneId_Attribute java.lang.String
expressionFeatureId_Attribute java.lang.String
organ_attribute java.lang.String
proteinId_Attribute java.lang.String
taxonId_attribute java.lang.String
threshold_Attribute java.lang.String
type_Attribute java.lang.String

ExpressionFeatureSearchCriteria
geneId_attribute java.lang.String

ExpressionMeasurementSearchCriteria
accessionNumber_Attribute java.lang.String
expressionMeasurementArrayId_Attribute java.lang.String
geneId_Attribute java.lang.String
name_Attribute java.lang.String
sequenceId_Attribute java.lang.String

63

ExpressionMeasurementArraySearchCriteria
expressionMeasurementId_Attribute java.lang.String
accessionNumber_Attribute java.lang.String
name_Attribute java.lang.String

GeneSearchCriteria
bcId_Attribute java.lang.String
cloneName_Attribute java.lang.String
organism_Attribute java.lang.String
symbol_Attribute java.lang.String
chromosomeId_Attribute java.lang.String
cMAPOntologyId_Attribute java.lang.String
cytogenicLocation_Attribute java.lang.String
expressionMeasurementId_Attribute java.lang.String
allPathwayId_Attribute java.lang.String
locusLinkSummary_Attribute java.lang.String
expressedPathwayId_Attribute java.lang.String
functionalPathway_Attribute java.lang.String
overExpressedPathwayId_Attribute java.lang.String
underExpressedPathwayId_Attribute java.lang.String
PathwayId_Attribute java.lang.String
mutatedGenePathwayID_attribute java.lang.String
geneBankAccessionNUmber_Attribute java.lang.String
geneKeyword_Attribute java.lang.String
geneNameKeyword_Attribute java.lang.String
goOntologyMouseId_Attribute java.lang.String
goOntologyHomoSapienId_Attribute java.lang.String
goOntologyId_Attribute java.lang.String
uniqueIdentifier_Attribute java.lang.String
symbol_Attribute java.lang.String
targetId_Attribute java.lang.String
taxonId_Attribute java.lang.String
tissueType_Attribute java.lang.String
unigeneClusterId_Attribute java.lang.String

GeneAliasSearchCriteria
description_Attribute java.lang.String
geneId_Attribute java.lang.String
type_Attribute java.lang.String

GeneHomologSearchCriteria
geneId_Attribute java.lang.String

GoOntologySearchCriteria
diseaseId_Attribute java.lang.String
histopathologyId_Attribute java.lang.String
geneId_Attribute java.lang.String
includeBoth_Attribute java.lang.String
includeChildren_Attribute java.lang.String

64

includeParents_Attribute java.lang.String
name_Attribute java.lang.String
relationshipChildId_Attribute java.lang.String
relationshipParentId_Attribute java.lang.String
relationshipType_attribute java.lang.String

GoOntologyRelationshipSearchCriteria
relationshipChildId_Attribute java.lang.String
relationshipParentId_Attribute java.lang.String
relationshipType_attribute java.lang.String

HistopathologySearchCriteria
diseaseId_Attribute java.lang.String
expressionExperimentid_Attribute java.lang.String
name_attribute java.lang.String
organId_Attribute java.lang.String

LibrarySearchCriteria
geneId_Attribute java.lang.String
libraryGroup_Attribute java.lang.String
libraryName_Attribute java.lang.String
libraryProtocol_Attribute java.lang.String
tissueType_Attribute java.lang.String
tissuePreparation_Attribute java.lang.String
tissueName_Attribute java.lang.String
tissueHistology_Attribute java.lang.String
sortOrder_Attribute java.lang.String
organism_Attribute java.lang.String

MapLocationSearchCriteria
geneId_Attribute java.lang.String
location_Attribute java.lang.String
type_Attribute java.lang.String

OrganSearchCriteria
anomaly_id java.lang.String
expressionFeatureId_Attribute java.lang.String
diseaseId_Attribute java.lang.String
histopathologyId_Attribute java.lang.String
geneId_Attribute java.lang.String
includeBoth_Attribute java.lang.String
includeChildren_Attribute java.lang.String
includeParents_Attribute java.lang.String
name_Attribute java.lang.String
relationshipChildId_Attribute java.lang.String
relationshipParentId_Attribute java.lang.String
relationshipType_attribute java.lang.String

65

OrganRelationshipSearchCriteria
relationshipChildId_Attribute java.lang.String
relationshipParentId_Attribute java.lang.String
relationshipType_Attribute java.lang.String

PathwaySearchCriteria
context_Attribute java.lang.String
displayValue_Attribute java.lang.String
geneId_Attribute java.lang.String
bioProcessId_Attribute java.lang.String
name_Attribute java.lang.String
pathwayDiagram_Attribute java.lang.String
taxonId_Attribute java.lang.String

ProteinSearchCriteria
geneId_Attribute java.lang.String
accessionNumber_Attribute java.lang.String
description_Attribute java.lang.String

ProteinHomologSearchCriteria
proteinId_Attribute java.lang.String

ProtocolSearchCriteria
name_Attribute java.lang.String

ProtocolAssociationSearchCriteria
clinicalTrialProtocolId_Attribute java.lang.String
protocolId_Attribute java.lang.String

ReadSequenceSearchCriteria
CloneId_Attribute java.lang.String
GeneId_Attribute java.lang.String
ReadSequenceId_Attribute java.lang.String
proteinID_Attribute java.lang.String
refGeneId_Attribute java.lang.String
tracefileID_Attribute java.lang.String

RelationshipSearchCriteria
RelationshipChildId_Attribute java.lang.String
RelationshipParentId_Attribute java.lang.String
relationshipType_Attribute java.lang.String

SAGEExperimentSearchCriteria
gene_Attribute java.lang.String
geneId_Attribute java.lang.String
expressionFeatureId_Attribute java.lang.String
organ_attribute java.lang.String
proteinId_Attribute java.lang.String
taxonId_attribute java.lang.String
threshold_Attribute java.lang.String
type_Attribute java.lang.String

66

SequenceSearchCriteria
accessionNumber_Attribute java.lang.String
cloneId_Attribute java.lang.String
expressionMeasurementId_Attribute java.lang.String
geneId_Attribute java.lang.String
refGeneId_Attribute java.lang.String
isRefSeq_Attribute java.lang.Boolean
returnDNA_Attribute java.lang.String
sequenceType_Attribute java.lang.String

SNPSearchCriteria
geneId_Attribute java.lang.String

TargetSearchCriteria
agentId_Attribute java.lang.String
anomalyId_Attribute java.lang.String
anomalyDescription_Attribute java.lang.String
geneId_Attribute java.lang.String
cancerType_Attribute java.lang.String
conceptID_Attribute java.lang.String

TaxonSearchCriteria
abbreviation_Attribute java.lang.String
chromosomeId_Attribute java.lang.String
isPreferred_Attribute java.lang.String
scientificName_Attribute java.lang.String

TissueSearchCriteria
libraryId_Attribute java.lang.String

TraceFileSearchCriteria
nameId_Attribute java.lang.String
cloneId_Attribute java.lang.String
snpId_Attribute java.lang.String

67

2 ENTERPRISE VOCABULARY SERVICES 22 EENNTTEERRPPRRIISSEE VVOOCCAABBUULLAARRYY SSEERRVVIICCEESS

68

2.1 Introduction to the NCI Enterprise Vocabulary Services
The NCI Enterprise Vocabulary Services (EVS) were developed in response to the need for

consistent shared vocabularies among the various projects and initiatives at the National Cancer
Institute. Data systems at NCI grew over time, each designed to meet a specific need, and the
vocabularies used for keywords and coding were often inconsistent. These discrepant
terminologies and usage led to significant search complexity and data-sharing problems. The
EVS is addressing these needs for both science management and science research.

The EVS is a set of services and resources that provide NCI with controlled biomedical
vocabularies. It serves the science communities by organizing and translating their specific,
distinct, but overlapping, terminologies. The infrastructure of the EVS has both a technical
component and a human resource component. The technology includes server hardware;
database, editing, and management software; and applications programming interfaces. The
human resources include operations staff to look after the servers, vocabulary databases, and
software; curators to maintain and update the vocabulary database content; and applications
support staff who interface the EVS to other NCI systems.

The two major vocabulary services provided by EVS are: the NCI Thesaurus, a description
logic-based NCI-specific biomedical thesaurus; and the NCI Metathesaurus, a collection of over
70 biomedical vocabularies, based on the National Library of Medicine’s (NLM) Unified
Medical Language System (UMLS) Metathesaurus. Each service has a Java API, as well as Java
servlets running on the web server to support vocabulary search and browsing

2.1.1 NCI Thesaurus
The NCI Thesaurus was specifically designed to support the terminologies unique to cancer

research and is updated on a monthly basis by the EVS team to reflect the most recent progress
in the field. It is tailored to meet the needs of the NCI database systems, with an emphasis on
the development of logical and consistent conceptual models. The NCI Thesaurus is intended to
provide ease of navigation among its concepts and accurate search and retrieval of data from its
databases.

The NCI Thesaurus contains about 18,000 concepts, represented by about 80,000 terms; its
primary usage is in the definition and regularization of terms used by NCI in automated systems
for keywording, database coding, and information retrieval. The Thesaurus is organized into 17
hierarchical trees covering areas such as Neoplasms, Drugs, Anatomy, Genes, Proteins,
Techniques, and others, and is available in two forms.

As a stand-alone vocabulary, the NCI Thesaurus is optimized for database coding, search,
and data-mining, and is intended for developers of applications that need a tightly controlled
vocabulary. Alternatively, much of the NCI Thesaurus content can be accessed as one of the
many vocabularies available through the NCI Metathesaurus.

2.1.2 NCICB Research Initiatives
The National Cancer Institute’s emphasis today is on advancing the promise of molecular

medicine and the translation of basic science findings into improved treatment and prevention
strategies. The insights gained from bioinformatics research and genomic studies, as well as
from animal models of human cancer, have the potential to greatly enhance our clinical treatment
strategies, but only if the supporting infrastructure to bridge these domains is present. It is

69

imperative that knowledge generated in one domain is accessible in other domains, and that
efforts to build infrastructure can effectively serve in multiple arenas.

caCORE provides the Institute with a cancer informatics infrastructure backbone, and a
critical dimension of this infrasturucture is the vocabularies which allow various applications to
share terminologies and data. Two of the most recently developed vocabularies at NCI are also
described in this chapter: the Mouse Models of Human Cancers Consortium (MMHCC)
vocabulary and the Core Terminology Reference Model (CTRM) vocabulary.

The NCI Mouse Models of Human Cancers Consortium (MMHCC) is a collaborative effort
to generate resources, information, and innovative approaches to the application of mouse
models to cancer research. One of its primary goals is to facilitate the exchange of scientific
knowledge within the mouse models research community. Towards this end, the MMHCC is
assembling a vocabulary to support the comparison and differential analysis of mouse and
human cancers.

The Core Terminology and Reference Model (CTRM) was developed to model and deploy
vocabulary in certain key domains for use by NCICB applications in a short time frame, through
a jump-start approach. The three terminology domains covered by CTRM include anatomy,
diseases, and therapeutic agents.

Currently, the MMHCC and CTRM terminologies are defined as stand-alone vocabularies.
These two vocabularies, MMHCC and CTRM, have recently been merged in a third namespace,
and we anticipate that the NCI Thesaurus will contain the CTRM, MMHCC, and NCI
vocabularies in a single namespace by early FY 2003.

2.1.3 NCI Metathesaurus
The NCI Metathesaurus is a collection of vocabularies and, in addition to the NCI Thesaurus,

includes over 70 biomedical vocabularies. These vocabularies include many of the sources from
the UMLS Metathesaurus, such as MeSH, Read (NHS), ICD, and other standard controlled
vocabularies, along with additional products licensed by EVS for NCI use, such as Stedman’s
Medical Dictionary, SNOMED, and MedDRA.

The NCI Metathesaurus maps each term in a given vocabulary to the corresponding terms in
all of the other vocabularies, thus enabling users to rapidly gain access to terms in unfamiliar
contexts. The Metathesaurus serves as a core infrastructure component at NCI, providing
abundant synonymy, English language definitions, and mappings between NCI terminology and
external sources. In addition, the NCI Metathesaurus facilitates the identification of gaps and
discrepancies in the prevailing terminologies and provides a central maintenance point and a
single vocabulary resource. The NCI Metathesaurus is also particularly useful for indexing web
documents, and can provide definitions and other semantic information about concepts
encountered in NCI web pages.

In its entirety, the Metathesaurus contains more than 800,000 concepts representing over 2
million individual terms. EVS has designed the NCI Metathesaurus for use as both an on-line
reference tool as well as a network resource for interactive software and web applications. The
specific intent of the Metathesaurus design is to facilitate collaboration, data sharing, and data
pooling for clinical trials and scientific databases. NCI Metathesaurus updates are released
quarterly on the NCI Metathesaurus server.

70

In addition to the NCI Thesaurus, vocabularies of particular note that are contained in the
Metathesaurus include:

• MedDRA (the Medical Dictionary for Regulatory Activities) is maintained and
distributed by TRW Inc. under a contract agreement with the International Federation of
Pharmaceutical Manufacturers (IFPMA) acting as trustees for the International
Conference for Harmonization (ICH). MedDRA is the international standard terminology
for reporting in the pharmaceutical industry. MedDRA is used by NCI to report adverse
events.

• ICD-O (the International Classification of Disease - Oncology) is the international
standard terminology for reporting cancer incidence and other epidemiologies. It is used
at NCI for epidemiology and, in particular, in the SEER (Surveillance, Epidemiology,
and End Results) program, an authoritative source of information on cancer incidence
and survival in the United States.

• MDBCAC (the Mitelman Database of Chromosome Aberrations in Cancer) contains
information culled from the literature by Felix Mitelman, Bertil Johansson, and Fredrik
Mertens, and relates chromosomal aberrations to tumor characteristics. The MDBCAC
vocabulary provides the terminologies used to code tissues in the chromosome aberration
database and is incorporated into several NCICB applications as well.

• PDQ (Physician Data Query) – In addition to the version currently used with the PDQ
production website, the NCI Office of Communications has heavily reworked the disease
and drug terminologies for NCI. The production PDQ source is identified as a subsource
in the Metathesaurus, and the new PDQ is incorporated into both the NCI Thesaurus and
Metathesaurus.

• The Lash Tissue Classifications taxonomy was developed by NCBI and is used to code
tissues and morphology of samples contained in NCBI and NCI databases, notably the
Cancer Genome Anatomy Project.

The NCI Metathesaurus provides matching of like terms along several dimensions. In
addition to lexicographic and “sound-alike” criteria, semantic content matching — perhaps the
most important measure of similarity — is also available. Specifically, the NCI Metathesaurus’s
concept-based vocabulary allows terms such as APAP, Acetaminophen, Tylenol,
Acetamidophenol, etc. to all be linked to the same core concept by a unique identifier.

EVS can also apply concept-based indexing to documents to match terms across the many
vocabularies stored with the NCI Metathesaurus. Entire documents containing ASCII text,
HTML, or XML-encoded data can be conceptually indexed. Due to the rich synonymy
contained in the Metathesaurus, the resulting indexes do not reflect the lexical content of the
documents but, instead, their semantic content.

In summary, the NCI Thesaurus contains the scientific, clinical, and administrative concepts
that NCI deals with in conducting its operations. The NCI Metathesaurus system maps the NCI
Thesaurus — as well as many other biomedical vocabularies — to a set of concepts spanning
both basic and clinical research and treatment.

The NCI Thesaurus is continually updated. Since 1999, contractors have created content and
edited the NCI EVS, with regular internal and external reviews by the user communities. Each

71

month, new NCI Thesaurus releases are published for NCI databases and other systems to use
and are introduced into the NCI Metathesaurus. These smaller monthly releases of the NCI
Metathesaurus help update rapidly changing areas in biomedical terminology, such as cancer
genetics and cell and molecular biology. Once a year, the NCI issues a major release of the NCI
Metathesaurus, thus keeping it updated with the latest releases of the NLM UMLS
Metathesaurus.

The remainder of this section of the caCORE User Manual is organized as follows. Section
2.2 describes the contents of three important EVS terminologies: the NCI Thesaurus, the
MMHCC vocabulary, and the CTRM vocabulary. Section 2.3 describes the interactive web
interface to the NCI Metathesaurus, EVS’s Metaphrase server. Section 2.4 outlines the caBIO
Java API to the NCI Metathesaurus for application developers. Finally, Section 2.5 describes the
format of the downloadable EVS flat files.

72

2.2 Local NCI Vocabularies

2.2.1 The NCI Thesaurus Vocabulary
The NCI Thesaurus is the reference biomedical vocabulary for the Institute. Built explicitly

to meet NCI’s needs, the Thesaurus contains many of the codes, keywords, and special purpose
vocabulary that are used there. More generally, however, the NCI Thesaurus may become a
reference terminology for the larger cancer research community. While it has historically been
available only to NCI researchers, as of the release of caCORE 1.0 it will be made freely
available to the general public.

The NCI Thesaurus embodies the following features:

• It facilitates Institute-wide consistency in the codification of data;

• The vocabulary is concept-based rather than term-based, thus providing the function of a
thesaurus, with concepts organized by meaning;

• The vocabulary includes concepts and terms usable by a broad range of users, including
lay clients, researchers, policy-makers, health care professionals, etc.

• It provides approximate matching (using wildcards), thus allowing the user to locate
concepts using imprecise terms and, subsequently, to select from among the “best
matches.”

The need to address the requirements of the general public, researchers, policy-makers, and
health care professionals places strong and sometimes conflicting demands on the design of the
NCI Thesaurus. On the one hand, there is the demand for consistency and accuracy. For
example, in order for coding and retrieval to be accurate, the NCI Thesaurus must be precise, be
logically correct, and have a dependable hierarchical structure.

On the other hand, there is the need to provide an easily understood structure — which often
leads to overlapping categories and tangled hierarchies of relations. Coupled with the need to
serve a broad community and to tolerate variant spellings and imprecise keywording, the
challenges are significant.

To address these challenges, NCI has teamed with Apelon, Inc., a software company
specializing in the development of biomedical vocabularies. The Metaphrase application (which
includes the NCI Thesaurus as NCI Source) takes care of some of these needs, and the
description logic NCI Thesaurus handles others.

The NCI Thesaurus implementation is based on the Ontylog implementation of description
logic (DL) — a computational paradigm that has evolved out of first order algebra as it relates to
acyclic directed graph structures and Aristotelian hierarchy.

In the Ontylog DL approach, for purposes of computation, concepts correspond to nodes in
an acyclic graph, and edges correspond to roles. Roles are uni-directional binary relations that
hold between concepts. Syntactically, two concepts connected by an edge form a triple. These
triples can be thought of as transitive sentences, with the concept at the origin of the edge being
the subject, the role being the transitive verb, and the concept pointed to by the edge being the
direct object.

73

Primitive concepts in an Ontylog DL are those atomic elements of the representation that are
not defined in terms of any other elements. While they may have a common-sense interpretation
to the user, their definitions exist outside the world circumscribed by the vocabulary. Their
relations to other non-primitive and primitive concepts define non-primitive concepts. In Ontylog
description logic, most concepts obtain their meaning from the role relationships that relate them
to other concepts.

The NCI Thesaurus is edited and maintained in the Terminology Development Environment
(TDE) provided by Apelon. The TDE is an XML-based system that implements the
computational model of description logic based on Apelon’s Ontylog Data Model. The Ontylog
Data Model uses four fundamental components: Concepts, Superconcepts, Kinds, and Roles.

A concept is the basic unit of information. An example of a concept is “Breast Ductal
Carcinoma.” A superconcept is the concept's parent in the is_a hierarchy. For example, the
superconcept of “Breast Ductal Carcinoma” is “Malignant Breast Neoplasm.” In other words,
"Breast Ductal Carcinoma" has an is_a relationship (is a specialization of) “Malignant Breast
Neoplasm.”

A kind is a major category or subdivision in the NCI Thesaurus. For example, both of the
categories “Findings and Disorders” and “Gene” are kinds. Each concept has a unique kind.
Other examples of kinds include: Anatomic Structures and Systems, Biological Processes, and
Clinical or Research Activity. Kinds are used by NCI ro restrict the concepts that may be
associated by certain roles. From the user’s point of view, the effect of these restrictions is to
increase the precision of the NCI Thesaurus.

A role is a relationship between concepts. It connects concept to concept and is passed from
parent to child in the inheritance hierarchy. For example, a “Malignant Breast Neoplasm” has
the role located-in, connecting it to the concept “Breast”. Thus, since the concept “Breast Ductal
Carcinoma” is-a “Malignant Breast Neoplasm,” it inherits the located_in relation to the “Breast”
concept.

Another example is associated-with, as in a particular gene is associated-with a particular
disease. These lateral relations among concepts are referred to as associative or semantic roles —
in contrast to the hierarchical relations that reflect the is-a roles.

In the first order algebra upon which Ontylog DL is based, for every defined relationship,
there is also an inverse relation. For example, if A is contained by B, then B contains A. Inverse
relationships are useful and are expected by human users of ontologies. However they have a
computational cost. Classification of the acyclic graph is a computational process used to
enforce inheritance and other formal properties of the DL. If the edges connecting concept nodes
are bi-directional, then the computation becomes NP hard. Therefore in the Ontolog
implementation of DL the edges are uni-directional. Inverse relationships do not exist in the NCI
Thesaurus, but they are available to users because they are computed by an application available
via the API.

For every defined relationship, there is also an inverse relation. For example, if A is
contained by B, then B contains A. For simplicity, these relations are labeled as Xxx and inverse-
Xxx, for example, is-a and inverse-is-a. Currently, inverse relations must be explicitly computed
by an application via the API. In future releases they will be computed automatically in the
Terminology Development Environment (TDE), and available directly.

74

Figure 2.2.1 gives a high-level overview of how the NCI Thesaurus is deployed, on both the
back- and front-ends, to provide rapid response time to routine maintenance tasks, browser
requests, and the Java application programming interface.

Distributed
Terminology

System
(DTS)

Terminology
Development
Environment

(TDE)

Applications

Terminology
Creation

and Maintenance

Terminology

Application
Development

and Deployment

Figure 2.2.1. An overview of the NCI Thesaurus infrastructure

The Distributed Terminology System (DTS) is supplied by Apelon and provides a Java API
for programmatic access to the NCI Thesaurus. As this is proprietary software, only a limited
interface through the caBIO application’s API is available to the public in release 1.0 of
caCORE. This interface was described in the preceding section. The contents of the NCI
Thesaurus are also available however, as a downloadable flat file, as described in Section 2.5.

The NCI Thesaurus has about 18,000 concepts, represented by about 80,000 terms. These
concepts are organized into hierarchies up to 15 levels deep, and are linked by about 85,000
semantic relationships. The NCI Thesaurus is optimized to support NCI’s software systems,
which are used for database coding and key wording, data-mining, database searching, and text
indexing.

Alternatively, much of the NCI Thesaurus content can be accessed as an integral part of the
NCI Metathesaurus. The NCI Metathesaurus is a much larger database of terminology,
containing over 850,000 concepts represented by about 2 million terms and over 4 million
relationships. However, the relationships encoded in the Metathesaurus are much more
primitive, as the primary intent of that project is to provide term matching across vocabularies.
The NCI Thesaurus is included within the NCI Metathesaurus so that NCI-specific terms can be
mapped to analogous terms in standard biomedical vocabularies.

The NCI Thesaurus was created to meet the needs of the NCI database systems and to ensure
that concepts would be modeled correctly. Correct modeling of NCI concepts permits reliable
navigation and accurate explosion and aggregation of concepts from the NCI databases. For
example, the superconcept breast cancer can be “exploded” to retrieve all of its subtypes, such
as ductal carcinoma in situ of breast, lobular carcinoma of breast, etc. Conversely, these more
specific concepts can be aggregated or “rolled up”

The NCI Thesaurus is continually updated. Subject matter experts create the content of the
NCI EVS vocabulary products, with reviews by NCI staff and outside reviewers.
Each month, new NCI Thesaurus releases are published. Once a year, there is a major release of

75

the NCI Metathesaurus, which keeps it updated with the latest release of the NLM UMLS
Metathesaurus.

76

2.2.2 The MMHCC Vocabulary
The NCI Mouse Models of Human Cancers Consortium (MMHCC) is a collaborative effort

to generate resources, information, and innovative approaches to the application of mouse
models to cancer research. One of its primary goals is to facilitate the exchange of scientific
knowledge within the mouse models research community. Towards this end, the MMHCC is
assembling a vocabulary to support the comparison and differential analysis of mouse and
human cancers.

Animal models that can mimic the origin, development, and clinical course of human
malignancies provide critical insight to all types of cancer research, including basic,
translational, clinical, and epidemiological studies. These models are generated by either
transferring new genes into, or inactivating genes already present in, an animal’s genome. The
animals are then susceptible to certain cancers by the same genetic and environmental conditions
that act on humans.

The resulting models are used to study the biology of tumor development and to evaluate
new methods of detection, diagnosis, prevention, and treatment. Mice are especially useful, as
their genetics, cancer susceptibility, and tumor formation often closely resemble those of
humans. In addition, because their tumors develop over months rather than years, the
deployment of these models affords rapid advances in our understanding of tumor formation and
progression.

Figure 2.2.2 shows the MMHCC’s Cancer Models Database (CMD) website, which allows
users to browse the database, submit new models, edit previously submitted models, and manage
their personal user accounts. In addition to more general information about the model, each
retrieved model page provides access to information about the model’s genetic description,
carcinogenic interventions, histopathology, therapeutic approaches, cell lines, images, and
publications. The general information page specifies the species, strain, and phenotype, along
with the name of the investigator and the laboratory where the model was developed.

An important component of the CMD architecture is its EVS-powered interfaces. The EVS
project has developed a controlled vocabulary explicitly for use in the study of mouse models of
human cancers in conjunction with the MMHCC pathologists, and the CMD organizes the
information provided on its search and submission forms around the EVS vocabulary trees.

The EVS MMHCC vocabulary includes disease name, organ/tissue, and strain terminologies.
Currently, the anatomical terms cover nine organ systems affected by cancers: breast/mammary
gland, prostate, lung/pulmonary, ovary, skin, blood/lymph, brain/neurologic, colon/intestinal
tract, and cervical tissues. The disease name terminologies are organized under the following
categories:

• Diseases of the Mouse Intestinal Tract

• Mouse Hematologic Disorders

• Diseases of the Human Breast

• Diseases of the Mouse Mammary Gland

• Mouse Nervous System Disorders

• WHO Classification of Human Ovarian Tumors

77

http://emice.nci.nih.gov/pdatabase

• Primary Pulmonary Tumors of the Mouse

• Diseases of the Mouse Prostate Gland

• Mouse Skin Disorders

Figure 2.2.2. The MMHCC Cancer Models Database.

The MMHCC views the deployment of a naming system around murine neoplastic diseases
as an important undertaking, as the terminology used in describing human disease processes may
not accurately represent the disease processes evident in mice. For example:

• In humans, the notion of “acute” is linked to the percentage of immature cells in the bone
marrow and the clinical course of the disease, as these are closely correlated. In mice
however, the percentage of immature cells in the bone marrow is not closely correlated
with clinical course and, accordingly, the term “acute” is not used, as it might convey
misinformation.

• In humans, the modifier “myeloid” has multiple possible meanings depending on its
context, and refers to an entire group of cell types. In mice, myeloid refers only to
granulocytes and monocytes. Thus, to reduce confusion, the murine terminology uses the
term non-lymphoid — to avoid confusion as well as to emphasize the differentiation of
lymphoid versus non-lymphoid disorders.

78

These are but two of the many often subtle differences in terminology between the two species.

Most recently, the CTRM and MMHCC vocabularies have been merged into a single
namespace, and a vocabulary browser can be used to view this combined vocabulary at
http://mmr.afs.apelon.com/CTRM/tree-menu.

Like the NCI Thesaurus, the MMHCC vocabulary uses description logic to represent
semantic relations between concepts. Description logics are a family of knowledge
representation formalisms rooted in earlier semantic network and frame-based systems, and are
based on the notion of concepts (classes) and roles (binary relations between concepts). (See
section 2.2.1 for further discussion.)

In addition to providing understandable, reproducible, and useful terminologies, a
concommitant goal of the EVS MMHCC vocabulary project is to establish processes, both
manual and electronic, whereby such controlled terminologies can be created and consistently
maintained with the help of outside subject experts.

In summary, the goals in creating the EVS MMHCC hierarchies have included:

• Formalizing a comprehensive, consistent naming system for mouse neoplasms, pre-
neoplastic disorders, and related diseases as well as making available other relevant
vocabulary such as murine strains and histopathologic staining methods;

• Providing a structured framework for use in the cataloguing and retrieval of MMHCC-
related resources such as images, dissection protocols, and mouse models;

• Establishing processes, both manual and electronic, whereby such controlled
terminologies can be created and consistently maintained with the help of outside subject
experts, and

• Providing a structured framework for the comparative anatomy and diagnosis between
mice and humans, thereby facilitating validation or certification of mouse models of
human disease.

A primary resource for additional information about mouse models is the emice website,
which provides links to information generated by the MMHCC as well as other NCI-supported
projects.

79

http://mmr.afs.apelon.com/CTRM/tree-menu
http://emice.nci.nih.gov/

2.2.3 The Core Terminology and Reference Model Vocabulary
The Core Terminology and Reference Model (CTRM) was developed to model and deploy

vocabulary in certain key domains for use by NCICB applications in a short time frame, through
a jump-start approach. The three major terminology domains covered by CTRM include
anatomy, diseases, and therapeutic agents.

NCICB applications, such as CMAP, CGAP, and the Director’s Challenge (DC), are at the
cutting edge of cross-disciplinary cancer research. As such, much of the computing and
application infrastructure in these projects has been deployed in advance of any comprehensive
terminology infrastructures in the core areas whose data they depend upon. These applications
soon ran into complications resulting from the need to incorporate data from diverse sources
coded with idiosyncratic terminologies. The CTRM vocabulary emerged as a rapid response to
the need to unify the various representations and facilitate the processing of heterogeneous data.

The CTRM can be viewed on the web via a vocabulary browser. Figure 2.2.3 shows a view
inside the Vocabulary Browser, after the user has selected “Ifosamide-Induced Hemorrhagic
Cystitis.”

Figure 2.2.3. The CTRM Vocabulary Browser.

80

Navigation inside the Vocabulary Browser is simple and intuitive; the left panel displays an
expandable terminology tree, and the right panel displays summary information about the
currently selected concept.

This summary report displays the Name, Code, Id, Classification, Roles and Properties of the
selected concept. The classification field re-iterates the concept’s position in the hierarchy,
tracing back to the top-level concept for that branch of the tree. The properties associated with a
concept include external codes, MeSH definitions, alternate and preferred names, synonyms,
semantic type, and source information, and any additional notes that might be available.

The Roles (and Inverse-Roles) of a given concept show that concept’s relationships to other
concepts. Like the other EVS vocabularies, the CTRM is based on description logic embodying
concepts (classes) and roles (binary relations between concepts). Roles are uni-directional in this
implementation of description logic, relating one concept to another concept in a specified
direction. The inverse-role points back in the other direction.

For example, the “Ifosamide-Induced Hemorrhagic Cystitis” concept has the relation
Disease_Has_Associated_Anatomy with the “Bladder” concept. Clicking on this concept in the
right panel links the user to the report summary for “Bladder,” where we find the Inverse-Role:
Inverse_Disease_Has_Associated_Anatomy leading back to “Ifosamide-Induced Hemorrhagic
Cystitis.”

The significance of CTRM is twofold. Firstly, CTRM serves as an indispensable bridging
technology in support of cutting-edge interdisciplinary cancer research projects ongoing at NCI.
Secondly, the CTRM project can be viewed as a successful experiment in rapid prototyping of
application-specific terminologies. As such, it provides facilities for rapid modeling of domain-
specific vocabularies, for simultaneously deploying a new vocabulary as it is being updated, and
for mapping terms from different terminologies. Our experience with CTRM is demonstrating
that creating an explicit reference model and subsequently mapping existing terms to this model
can advance the integration of applications and reduce application maintenance costs.

Currently, the MMHCC and CTRM vocabularies reside in separate namespaces. The
MMHCC vocabulary is used by the Cancer Models Database to retrieve mouse anatomy and
diagnosis terms. The CTRM vocabulary, which covers Anatomy, Diseases, and Therapeutic
Agents, was designed for use by other NCICB applications.

These two vocabularies, MMHCC and CTRM, have recently been merged in a third
namespace, and the applications which access these vocabularies separately are now in the
process of updating the appropriate Java classes to access this merged version of the two.

The CTRM vocabulary is also in the process of being merged into the NCI Thesaurus. We
anticipate that the NCI Thesaurus will contain the CTRM, MMHCC, and NCI vocabularies in a
single namespace by early FY 2003.

81

2.3 The Metaphrase Web Interface
The NCI Metathesaurus provides NCI applications with a comprehensive source of

terminology relevant to NCI’s operations in a single, integrated resource. The NCI
Metathesaurus is available through the web interface described in this section, as well as through
a Java API, which is described in the following section.

The NCI Metathesaurus contains over 70 vocabularies, including: most of the public domain
and certain proprietary vocabularies in the National Library of Medicine’s Unified Medical
Language Thesaurus (UMLS sources); vocabularies developed internally at NCI; and external
vocabularies that NCI has licensed.

The local vocabularies developed at NCI are listed in Table 2.3.1. Three of these, the NCI
Thesaurus, MHCC, and CTRM vocabularies, were described in the previous section. A limited
model of the NCI Thesaurus is accessible via the Metaphrase browser, as the NCI Source. The
MHCC and CTRM vocabularies have not yet been incorporated into the NCI Thesaurus, but will
be in the near future.

Vocabulary Content Usage
NCI
Thesaurus

Codes, keywords and special purpose
terminology for internal use at NCI

Reference terminology for internal
NCI applications

NCIPDQ Expanded and re-organized PDQ CancerLit indexing and clinical
trials accrual

NCISEER SEER terminology Incidence reporting
CTEP CTEP terminology Clinical trials administration
MDBCAC Topology and Morphology Cancer genome research
ELC2001 NCBI tissue taxonomy Tissue classification for genetic data

such as cDNA libraries.
ICD03 Oncology classifications Cancer genome research and

incidence reporting
MedDRA Regulatory reporting terminology Adverse event reporting
MMHCC Mouse Cancer Database terminology Mouse Models of Human Cancer

Consortium
CTRM Core anatomy, diagnosis and agent

terminology
Translational research by NCICB
applications

Table 2.3.1. NCI local source vocabularies included in the Metathesaurus.

The Metaphrase server is a Java application developed by Apelon, Inc. The Metaphrase
server implements limited natural language processing and semantic network features, with
lexical matching applied to locate related terms. Specifically, given a phrase or keyword entered
by the user, it searches for definitive terms sharing significant lexemes or roots, with the user’s
input.

For example, the expression “degenerative joint disease” is said to be lexically related to the
phrase “Joints, Knee,” as they share the “joint” lexeme. Two phrases containing exactly the same
set of lexemes are said to be lexically equivalent, meaning that there is a one-to-one mapping of
the significant terms in the two expressions.

82

Figure 2.3.1 shows the first page of the Metaphrase browser. As indicated by the basic and
advanced folder tabs, the browser provides two levels of interaction. In the basic interface, the
user simply enters a keyword or phrase directly into the text search box and presses enter. In the
advanced interface, shown in Figure 2.3.1, additional options (described below) are provided to
limit the search.

Figure 2.3.1. The NCI Metaphrase web interface.

In either case, the first response to the user’s initial query is a list of matching concepts from
the Metathesaurus. The first column in this result list shows the concept’s preferred name, and
the second column shows its semantic type. For example, the concept “Mouse” has the semantic
type “Mammal,” while the concept “Knock-Out Mouse” also has the semantic type “Mammal”
as well as “Experimental Model of Disease.”

Clicking on the (selectable) name of a concept in the left column yields the information page
(Figure 2.3.2) for that concept. This page is a compendium of definitions, synonyms, and related
concepts, culled from all of the sources whose vocabularies include either the concept itself or a
known synonym for the concept. Each definition has a prefix indicating the source providing that
definition.

Following the list of synonyms is a list of the sources, with each represented as a selectable
hyperlink. Clicking on one of these sources produces a page providing information about the
term in that source, including: the term’s ID and preferred name [PT] in that vocabulary,

83

synonyms [SY], acronyms [AB], and, if the source is of hierarchical form, the position of that
term in the source hierarchy.

Figure 2.3.2. The Information page for a Concept in the Metaphrase browser.

Underneath the list of sources on the information page is a drop-down menu box entitled
“View Neighborhood.” Selecting a source in this box and clicking OK produces an expanded list
of all semantically related (“nearby”) concepts in that terminology. Not all vocabularies include
semantic relations; these specify additional dependencies beyond the simple inheritances implied
by the concept hierarchies and convey relationships such as “caused by”, “contains”, etc. For
vocabularies defining semantic networks of such relations, the concepts included in the
“neighborhood” are those removed from the current concept by just one link.

2.3.1 Navigating Over Related Concepts
The information page (Figure 2.3.2) also displays additional concepts related to the current

selection. These related concepts are broken down into Broader Concepts, Narrower Concepts,
and Related Concepts. Not all sources possess hierarchies. Broader and Narrower Concepts are
derived from those sources that do contain hierarchy structures. Taken across all sources with
hierarchies in which the concept occurs:

84

• Each concept may have one or more broader concepts whose semantic content is a
generalization of the selected concept, and

• A concept may have 0 to many descendants, where each descendant concept is a
specialization of the current concept.

Thus, the list of broader concepts is the compendium of antecedent concepts from all of the
sources that have hierachies, and the list of narrower concepts is the set of all descendant
concepts over all such vocabularies.

The list of Related Concepts encompasses a broader and less well-defined set of relations, as
it depends on the semantic relations defined in the contributing vocabularies. Some vocabularies,
such as the NCI Thesaurus, define very sophisticated and specific relations, such as the fact that
a particular bacterium is the etiologic agent of a specific disease. Other sources provide only
primitive relations indicating that two concepts depend on one another in unspecified ways.

All of the concepts listed as either Broader Concepts, Narrower Concepts, or Related
Concepts are hyperlinked to the corresponding information pages for those concepts. Some of
these are annotated to indicate the specific relation that is referenced.

For example, the concept “glioblastoma” lists “Common Neoplasm” as a broader concept
through an inverse_isa relation, meaning that “glioblastoma” is_a (type of) “Common
Neoplasm.” Similarly, many of the descendant concepts listed as narrower concepts are related
to the parent concept through direct is_a relations, e.g., “gliosarcoma” is_a (type of)
“glioblastoma.”

Some of the related concepts for this example are particularly interesting, and include
“Astrocytomas,” which is referenced via the mapped_from relation; “Brain” and “Central
Nervous System,” which are both referenced through the location_of relation; and “GLI1
Protein,” which has the relation Malfunction_Is_Associated_With_Disease. Finally, those related
concepts that are contained in any of the NCI local sources are highlighted in blue.

2.3.2 MeSH Headings Occurring in the Metathesaurus
In addition to the content described thus far, the information pages for concepts that are also

MeSH headings provide links to supplemental concepts that co-occur in MedLine with the
concept of interest. These are grouped into four categories: Medications, Procedures,
Laboratory, and Diagnosis. The most commonly co-occurring concepts appear at the top in each
category.

Each supplemental concept is preceded by a MedLine hyperlink, and clicking on that
hyperlink opens a new window connected to the NCBI Entrez browser, which provides a list of
clinically relevant articles indexed by Medline. Alternatively, clicking on the concept itself
brings up the summary information page for that concept provided by Metaphrase.

Figure 2.3.3 for example, shows the procedures associated with the concept “blood cell,”
along with the Medline references displayed by the Entrez browser when the link for “stem cell
transplantation” is selected.

85

Figure 2.3.3. Metaphrase hyperlinks (in green) to Entrez PubMed references.

2.3.3 Advanced Browsing Options
As mentioned at the start of this section, Figure 2.3.1 displays the advanced interface for the

Metaphrase browser. Thus far, however, we have not referred to any of the options provided by
this feature, as our discussion has focused instead on navigating through the result pages. The
advanced options are provided to the user as buttons on the main menubar (see Figure 2.3.4
below).

Starting from the leftmost position, a textbox appears, allowing the user to enter keywords or
phrases to search for. In the simplest use of this interface, the user merely enters the desired
concepts and presses the Search button. This corresponds to the Basic interface.

Figure 2.3.4. The advanced options menubar.

The remaining buttons allow the user to:

• Limit the number of matching concepts returned in the results list (Concepts);
• Restrict the search to a selected vocabulary (Sources);
• Search by string matching or by code (String, Code); and
• Limit the number of lexical matches (Short, Score).

By default, the maximum number of concepts returned on a single query is 10, and only the
highest-quality lexical matches are shown. Unless explicitly reset, the sources used in concept
matching will include all of the vocabularies in the Metathesaurus, and the matching will be

86

performed on concept names. In cases where one knows the encoded ID for the concept and the
vocabulary in which it is defined, using the Code and Sources options can speed up the search.

2.3.4 Viewing the NCI Thesaurus
Alternatively, it is possible to bypass the search interface altogether, and simply select

concepts one is interested in from the NCI Thesaurus. To do this, select the Browse button on the
left-hand panel of resources. This will pop up a new browser window displaying the Thesaurus’s
expandable terminology tree. Clicking on links in this window causes the associated information
pages to appear in the Metaphrase browser window. Thus, the NCI Thesaurus effectively serves
as an ontology browser for the content of the NCI Metathesaurus.

Figure 2.3.5 shows a screen shot of two views of the NCI Thesaurus terminology tree. The
shot on the left shows the entire collapsed top-level vocabulary. Superimposed over that is an
expanded view of the top-level Conceptual Entities term.

Figure 2.3.5. The NCI Thesaurus vocabulary tree.

The NCI source in the NCI Metathesaurus is based on the NCI Thesaurus, which is an
extremely powerful vocabulary resource that uses description logic to capture complex semantic
relationships among its terms. The description logic structure of NCI Thesaurus can express
sophisticated semantics that cannot be represented in the UMLS-based NCI Metathesaurus.
Thus, the NCI source is an approximation of the NCI Thesaurus, but not a full approximation.

87

2.4 The caBIO Java API to the Enterprise Vocabulary Services
The caBIO project and its applications programming interfaces (APIs) are described in detail

in Section 1 of this manual. In addition to descriptive overviews of the caBIO architecture and
the data sources to which it provides access, Section 1 gives detailed instructions on how to
download the necessary files and set up an environment to use the caBIO APIs.

In this section we describe a Java package within the caBIO infrastructure that was
developed as a simple interface to the EVS terminologies. Figure 2.4.1 depicts the five Java
classes participating in this interface.

Figure 2.4.1. The caBIO-EVS Java interface.

On the left-hand side of Figure 2.4.1, two classes are shown that are defined in caBIO’s
gov.nih.nci.caBIO.bean package. The three classes on the right are defined in a separate package,
named gov.nih.nci.caBIO.evs.

The ConceptSearch class is considered to be a “domain object” and, as described in Section
1, like all domain objects, has an associated SearchCriteria object, which in this case is named
ConceptSearchCriteria. The search criteria paradigm deployed by caBIO provides powerful
search mechanisms, which we summarize briefly here. For a more detailed description of the
SearchCriteria class, see Section 1.2.

Each SearchCriteria object has a group of settable attributes that can be used to define the
terms or objects the user wishes to retrieve from the data sources. The domain object’s method is
then invoked on this SearchCriteria object, and the return value is a SearchResult object.

In addition to containing an array of the results retrieved from the data sources, a
SearchResult object contains certain bookkeeping information, such as the indices of the first and
last result, the total number of results returned in this batch, and whether or not further results are
yet available. In the event that more results are available, the SearchResult object can be used to
generate a new SearchCriteria object with the same attribute values as the original, but with the

88

additional constraint that the first result’s index should pick up where the previous SearchResult
array ended.

Figure 2.4.2 shows a section of Java code that uses some of the objects depicted in Figure
2.4.1 to retrieve concepts related to the keyword “breast.”

ConceptSearch cs = new ConceptSearch();
ConceptSearchCriteria csc = new ConceptSearchCriteria();
csc.setSearchTerm("breast");
Concept[] concepts = cs.search(csc);

if(concepts!=null){
 for (int i=0; i < concepts.length; i++){
 Concept con = concepts[i];
 System.out.println("Name = " + con.getName());

 SemanticType[] st = concepts[i].getSemanticTypes();
 for (int j = 0; j < st.length; j++){
 System.out.print("Semantic type " + j + ") = ");
 System.out.println(st[j].getName() + " (" + st[j].getID() + ")");
 }

 String[] src = concepts[i].getSources();
 for (int j = 0; j < src.length; j++) {
 System.out.println("Source " +j+") = "+ src[j]);
 }

 String[] syn = concepts[i].getSynonyms();
 for (int j = 0; j < syn.length; j++) {
 System.out.println("Synonym " +j+") = "+ syn[j]);
 }
 System.out.println("\n=================================\n");
 }
}

Figure 2.4.2. Using the caBIO EVS Java to retrieve concepts.

The complete specifications for the caBIO packages and class definitions are available on the
caBIO project’s JavaDoc pages. Two examples of full-scale implementations that deploy the
caBIO EVS interface are the CMAP project’s website and the Cancer Models Database (CMD),
hosted by the MMHCC project. The CMD project uses the caBIO’s EVS interface to access the
MMHCC vocabulary, which is described in Section 2.4.

Figure 2.4.3 shows the output generated by executing the code in Figure 2.4.2. The program
begins by using the ConceptSearchCriteria object to define keywords to which terms should be
matched. This step corresponds to entering keywords or phrases in the Metaphrase browser’s
textbox. Next, invoking the search() method corresponds to pressing the Search button on the
browser.

The matching concepts returned by the search are then iterated over in the main loop, where
the Concept object’s methods getName(), getSemanticTypes(), getSources(), and getSynonyms()
are applied, with the results printed to the screen.

89

http://ncicb.nci.nih.gov/content/coreftp/caBIO_JavaDocs/index.html
http://cmap.nci.nih.gov/
http://cancermodels.nci.nih.gov/mmhcc/index.jsp

Name = Breast

Semantic type0) = Body Part, Organ, or Organ Component (T023)

Source 0) = NCI
Source 1) = MDBCAC
Source 2) = NCI

Synonym 0) = Breast

=================================

Name=Breast, NOS

Semantic type0)=Body Part, Organ, or Organ Component (T023)

Source 0)=ICDO3
Source 1)=ICDO3
Source 2)=NCI
Source 3)=ICDO3
Source 4)=AOD99
Source 5)=CCPSS99
Source 6)=CSP2000
Source 7)=LCH90
Source 8)=LNC10o
Source 9)=MSH2001
Source 10)=MTH
Source 11)=RCD99
Source 12)=SNMI98
Source 13)=UWDA142

Synonym 0)=Breast, NOS
Synonym 1)=Mammary gland, NOS
Synonym 2)=Mamma

=================================

Name=Procedures on breast

Semantic type0)=Therapeutic or Preventive Procedure (T061)

Source 0)=CCS99
Source 1)=ICD10AM
Source 2)=MTH
Source 3)=RCD99
Source 4)=SNMI98

Synonym 0)=Procedures on breast
Synonym 1)=Breast

Figure 2.4.3. Output generated by executing the code in Figure 2.4.2.

90

2.5 Downloadable Flat File Formats
The concepts stored in the NCI Thesaurus vocabulary are available for download from the

caCORE ftp site. The format of these files is extremely simple, and a good deal of consideration
went into making these formats easily parse-able. For each concept, the download file includes
the following information:

1. The concept code: all terms have the “C” prefix, followed by its integer index;

2. The preferred concept: this name may contain embedded punctuation and spaces;

3. A list of all parent concepts, as identified in the NCI Thesaurus by the inverse_isa relations;

4. A list of synonyms, the first of which is the preferred name;

5. One of the NCI definitions for the term – if one exists.

Each of these separate types of information is tab-delimited; within a given category, the
individual entries are separated by pipes (“|”). Only the third and fourth categories, i.e. the parent
concepts and synonyms, have multiple entries requiring the pipe separators. Note that while
much of the information available from the interactive Metaphrase server is included in the
download, any information outside the NCI Thesaurus description logic vocabulary (e.g.,
Diagnosis, Laboratory, Procedures, etc.) is not.

For example, the flat file download for the term “Mercaptopurine” is as follows:

C6 Mercaptopurine Immunosuppressants|Purine Antagonists
 Mercaptopurine|1,3-AZP|1,7-Dihydro-6H-purine-6-thione|3H-Purine-6-thiol|6
Thiohypoxanthine|6 Thiopurine|6-MP|6-Mercaptopurine|6-Mercaptopurine
Monohydrate|6-Purinethiol|6-Thiopurine|6-Thioxopurine|6H-Purine-6-thione,
1,7-dihydro- (9CI)|6MP|7-Mercapto-1,3,4,6-tetrazaindene|AZA|Alti-
Mercaptopurine|Azathiopurine|BW 57-323H|CAS
50442|Flocofil|Ismipur|Leukerin|Leupurin|MP|Mercaleukim|Mercaleukin|Mercap|Me
rcaptina|Mercapto-6-purine|Mercaptopurinum|Mercapurin|Mern|NCI-C04886|NSC
755|Puri-Nethol|Purimethol|Purine-6-thiol (8CI)|Purine-6-thiol
Monohydrate|Purine-6-thiol, Monohydrate|Purinethiol|Purinethol|U-4748|WR-2785
 An anticancer drug that belongs to the family of drugs called
antimetabolites.

91

ftp://cacore:cacoreftp@ncicbftp2.nci.nih.gov/cacore/EVS/

3 CANCER DATA STANDARDS REPOSITORY 33 CCAANNCCEERR DDAATTAA SSTTAANNDDAARRDDSS RREEPPOOSSIITTOORRYY

92

3.1 The NCI Cancer Data Standards Repository
A critical factor in the advancement of translational research on the frontiers of basic and

clinical research is the ease with which data can be shared and exchanged. Several obstacles to
data sharing in the scientific and medical communities include:

• Different repositories may store the same data but use different data type descriptors in their
interfaces and/or documentation, thus obscuring the actual contents;

• In clinical trials, there are no set standards regarding the contents of report forms — either in
the naming conventions for the data fields or in the types of values that can populate these
fields;

• Various locations may specify different sets of permissible values for the same data types;

• Different units of measures (e.g., months versus years) are applied to the same variables in
different contexts.

The immediate consequences of these practices are that ad hoc translation filters must be
constructed with each new effort to share data, only to be discarded months later as the projects
change or come to completion. In the worst case scenario, the incompatibility of the data sets
prevents comparative analysis efforts altogether. Longer-term consequences include the lengthy
approval cycles entailed for new clinical trials, and the enormous duplication of work involved in
all of these efforts.

NCICB supports a broad initiative to standardize the data elements used in clinical trials data
capture and reporting. The NCICB Cancer Data Standards Repository (caDSR) is on the cutting
edge of new technologies emerging to address these issues. Based on the ISO/IEC 11179
standard for Data Elements, the Oracle Service Industries (OSI) division has developed a
flexible, customizable registry service with an Oracle 8i database back-end for the controlled
curation of terminology to be used in shared clinical and basic research data.

A more detailed description of the ISO/IEC 11179 standard for data elements and how they
are to be administered is provided in the next section. Briefly, a data element has both a
representational component (its value) and a conceptual component (its semantic interpretation).
Each of these components also has a domain of legitimate values or concepts it can assume. The
data element in its entirety (i.e. its component and domain specifications) must pass through a
registration and approval process before it is posted in the registry. In addition, each element has
an assigned steward or point of contact.

The core model of the ISO/IEC standard includes provisions for the following components:

• Data elements
• Value domains
• Data element concepts
• Conceptual domains
• Classification schemes

In addition to the provisions specified in the ISO/IEC standard, the caDSR adds the following
administered components: Protocols and Questionnaire Content Elements. Like the core model
components, these two extensions require registration and stewardship.

93

The Common Data Elements (CDEs) stored in the caDSR define a comprehensive set of
standardized metadata descriptors for cancer research terminology and clinical trials protocols
and forms. These data elements have been developed by various NCI-sponsored clinical trials
organizations; the data are centrally stored and managed at NCICB in the caDSR.

Programs that have CDE development projects underway include:

• The Cancer Therapy Evaluation Project (CTEP)
• Specialized Programs of Research Excellence (SPOREs)
• Mouse Models of Human Cancers Consortium (MMHCC)
• The Early Detection Research Network (EDRN)
• The Division of Cancer Prevention (DCP)
• The Biomedical Imaging Program (BIP)

Extramural involvement has also included work with the International Collaboration to
Screen for Lung Cancer (ICScreen) and the International Association for the Study of Lung
Cancer (IASLC) on the collaboration of studies of lung cancer screening with Spiral CT. The
caDSR platform provides domain-specific work areas referred to as contexts for these various
projects accessing the registry. Thus it is possible to maintain coincident non-redundant
terminologies with alternative yet unambiguous semantic interpretations that vary with the
application.

The NCI caDSR provides a relational database and user interface in support of the workflows
involved in the creation, curation, and deployment of CDEs for the advancement of translational
research in the treatment and prevention of cancer. This section of the caCORE Manual gives an
introduction to the underlying design structure of this registry and an overview on how to use it.
The remainder of this chapter is organized as follows.

The next section provides a review of the proposed ISO/IEC 11179 standard for Data
Elements. Next, a description of the user interface to the caDSR is given, followed by an
overview of the caDSR data model. Section 3.5 provides a catalog of the tables in the caDSR,
and Section 3.6 contains the complete data model, including all tables along with their relations
and field names. A separate document, The caCORE 1.0 caDSR Database API, provides detailed
information on the PL/SQL stored procedures.

94

http://ctep.cancer.gov/
http://spores.nci.nih.gov/
http://emice.nci.nih.gov/
http://www3.cancer.gov/prevention/cbrg/edrn/
http://www3.cancer.gov/prevention/
http://www3.cancer.gov/bip/
http://icscreen.med.cornell.edu/

3.2 Data Elements in the ISO/IEC 11179 Standard
The ISO/IEC 11179 Specification and standardization and registration of data elements and

associated metadata is a draft standard being developed by the JTC1 (Joint Technical Committee
1) Data Management and Interchange Subcommittee (SC3). The purpose of the ISO/IEC 11179
standard is to support the identification, definition, registration, classification, management,
standardization, and interchange of data elements, and to promote the sharing and exchange of
data throughout the international community. This standard has six parts:

• Part 1: Framework for the specification and standardization of data elements

• Part 2: Classification for data elements

• Part 3: Basic attributes and registry metadata

• Part 4: Rules and guidelines for the formulation of data definitions

• Part 5: Naming and identification principles for data elements

• Part 6: Registration of data elements

The NCI caDSR is an ISO/IEC 11179 compliant database system that was originally build by
the Oracle Service Industries division for the U.S. Census Bureau and is also the basis for the
caDSR. Oracle's version of this registry is based on the UML metamodels and attribute
definitions of the ISO/IEC FDIS 11179-3:2002. It is the intention of the caDSR project to
provide a Conforming implementation at Level 2 as described in the standard. Extensions to the
standard are administered components Protocols and Questionnaire Content Elements.

The Data Element Registry provides a reusable, customizable framework for the
development of a custom registry. A repository provides only for the storage management of
data or metadata. A registry, however, additionally provides a registration process for
standardization and authority management of the information it maintains. Developing a
controlled and registered terminology requires rigorous definitions of both the components that
will populate the registry and the protocols that will limit how new terms are entered and
persistent terms are maintained. An Oracle development team has worked with NCI to adapt this
framework to the needs of the cancer research community, with careful emphasis placed on the
need to standardize the terminologies germaine to basic research, patient care, and clinical trials
management and protocols.

3.2.1 Concepts and Terminology
The ISO/IEC 11179 standard defines a Data Element as a unit of data that in a certain

context is considered indivisible. Often the terms “variable,” “code,” and “field” are used
synonymously to mean a Data Element (e.g., Person Name, Person Age, Hospital ID, etc.). As
depicted in the UML diagram in Figure 3.2.1, each data element has both a value and a concept
associated with it. The cardinality constraints in Figure 3.2.1 specify that:

• A Data Element has exactly one Data Element Concept and exactly one Value Domain
associated with it.

• A Data Element Concept has exactly one Conceptual Domain and any number of associated
Data Elements.

95

• A Conceptual Domain may have any number of Data Element Concepts and Value Domains
associated with it.

• A Value Domain has exactly one Conceptual Domain and any number of associated Data
Elements.

0..* 0..*

1..1

0..* 1..1

0..* 1..1

1..1

Value
Domain

Data
Element
Concept

Conceptual
Domain

Data
Element

Perception

Representation

abstract

concrete

Figure 3.2.1. The basic ISO/IEC 11179 UML Model.

The Data Element’s Value Domain (VD) defines the set of permissible values for the
element, thus constraining the specific value that can be assigned to any particular instance of
that Data Element. The Value Domain specifies the data type (e.g., character, number, date),
format (e.g., number formats, date formats, ASCII code, Unicode), and, optionally, the unit of
measure the values are to be expressed in. For example, the Value Domain for the Data Element
Person Name might specify that the data type is character and the format is ASCII.

A Value Domain can be enumerated or non-enumerated. For non-enumerated, a range may
be specified by its lower and upper bounds, but it will not have any Permissible Values (see
below). Value domains can also be related to each other, and the relationship can be specified —
for example, part-of, similar-to, etc.

A Permissible Value satisfies the constraints of the element’s Value Domain, and has both a
concrete value as well as a Value Meaning associated with it. For example, a Permissible Value
for the Value Domain “Postal U.S. State” might be “AL,” with the Value Meaning
“ALABAMA.” Value Meanings may be maintained and reused.

While a Data Element’s Value has a physical representation (data type, format, etc.), a Data
Element Concept does not. A Data Element Concept is used for grouping similar Data Elements,
and consists of an Object Class and a Property. The element’s Object Class is an abstraction in
the real world that is being modeled (Person, Disease, etc.). An element’s Property is a
peculiarity common to all members of the element’s Object Class. It is much like an “attribute”
in relational terms, with the important exception that a Property does not have a specified
representation. The Data Element Concept is often named by its Object Class and Property (e.g.,
“Person Age,” “Person Sex”). Data Element Concepts can also be related to each other by
relationships such as part-of and similar-to.

96

The Data Element’s Conceptual Domain can be thought of as the perception of the element’s
Value Domain without any physical representation. Instead of Permissible Values, only Value
Meanings may be assigned. For example, the Data Element U.S. State might have a Value
Domain that specifies postal codes or, alternatively, the full state names. In this case, we do not
know how the Data Element’s value will actually be represented, but we do know that its
semantic interpretation must map to one of the 50 states.

Simple Data Elements can be aggregated in various ways to form more complex elements.
Table 3.2.1 lists the five different ways in which primitive data elements can be combined or
transformed, leading to five different derivation types.

Derivation
Type

Derived Data
Element

Sub Data Element Description

Compound Mailing Address Street Address
City
State
Zipcode

Grouping of Data Elements
with a Display Order

Concatenation Telephone Number Phone Area Code
Phone Exchange
Phone Instrument

Grouping of Data Elements
with a Display Order and
Concatenation Character

Object Class Person Person ID
Person First Name
Person Last Name
Person Age
Person Sex

Grouping of Data Elements
with optional Methods

Calculated Person Annual Salary Person Weekly
Salary

Data Elements with a
Derivation Rule (e.g., PAS =
PWS * 52)

Recoded Employment
Indicator

Person Age
Worked Last Week
Seeking
Employment

Data Elements with a Complex
Derivation Rule (e.g., EI=Yes
when Age >=15 and Worked
Last Week = Yes)

Table 3.2.1. Derived Data Elements (also called Complex Data Elements).

In addition to the Data Elements and their related components depicted in Figure 3.2.1, the
registry defines certain organizing constructs that impose semantic structure on the registry. As
mentioned, a Data Element’s concept can be used for grouping like elements. But this conceptual
clustering is limited by the fact that each element maps to a single unambiguous concept. In
practice, different categorizations may become applicable depending on the particular usage
scenarios.

Part 2 of the ISO/IEC 11179 specification defines the properties that a Classification
Scheme (CS) must exhibit. A Classification Scheme must have a Classification Scheme Type;
examples of Classification Scheme Types are keywords, thesaurus terms, taxa and ontological
terms. The Classification Scheme itself is composed of Classification Scheme Items (CSI),
which may or may not be hierarchical. The CSI may be associated with zero or more Data
Elements.

97

A second important organizing construct in the caDSR is a Context, which serves many
purposes. The ISO/IEC 11179 standard defines a Context as a “designation or description of the
application environment or discipline in which a name is applied or from which it originates.” A
Context might be an organization or business area, a clinical trial, a project, or whatever the
CaDSR users decide. The idea is that all of the entities occurring in the registry are defined and
managed within one or more Contexts.

Figure 3.2.2 captures the hierarchical relationships among the metadata components defined
in the ISO/IEC 11179 model and in the CaDSR . The Administered Components and
Administered Component Statuses appearing near the top of the diagram are described below.

The ISO/IEC 11179

Classification
Schemes

Items

Classification
Schemes

Administered Component
Statuses

Permissible Value Value
Data

Element

Contexts

Data Element

Conceptual

Administered
Component

Figure 3.2.2. Hierarchical relationships among metadata components.

3.2.2 Administration and Stewardship in the CaDSR
An Administered Component (AC) is any object in the registry that requires naming,

identification, and administration. The CaDSR defines all of the following as Administered
Components:

• Data Elements
• Data Element Concepts
• Value Domains

98

• Conceptual Domains
• Classification Schemes

An Administered Component must have at least one Designation (name), and at least one
Definition. While an AC may have several of these, the CaDSR requires that each AC has
exactly one preferred name, preferred definition, and preferred context – all of which are
maintained as direct attributes of the AC. An Administered Component in the CaDSR also has
an Administration Status, specifying that the object is Legacy, Draft, Working, Reviewed,
Approved, etc.

Each Data Element has a Steward who is responsible for the metadata quality of an object.
This person may not have created the metadata, nor even be in charge of its maintenance, but
serves as the point of contact for the Data Element. The Steward belongs to an Organization,
which can be identified at any level such as Agency, Program Area, Staff Area, or Project. The
CaDSR , however, does not store the hierarchical Organization chart.

The ISO/IEC 11179 standard specifies a model for “registering” Data Elements with a
Registration Authority. It is via the Registration Authority that Data Elements can be
“standardized.” The 11179 standard presumes registration of a given Data Element through a
single authority. However, the CaDSR widens the use of the Registration meta-model, and
allows Data Elements to be registered by many different Registration Authorities. The
motivation for this is to permit a “staged” registration process that allows authorities to “pre-
register” Data Elements locally prior to submitting them to a higher Registration Authority
where the terms become part of an international standard.

99

3.3 The caDSR Web Interface
The Cancer Data Standards Repository (caDSR) provides a web interface for browsing,

maintaining and editing the administered components stored in the central Data Element
Registry. The home page for this web site (Figure 3.3.1) consists of two panels:

• Metadata Browsing and Maintenance provides an interface for maintaining data
elements, data concepts, value domains, conceptual domains, and classification
schemes;

• Submissions/Registrations and System Administration is provided for tasks such as
the creation of new user accounts, user groups, contexts, and workflow transitions;

While the caDSR has functionality for the registration process, this capability is not
currently used, and is included in this discussion for completeness only. The remainder of
this section focuses instead on the Metadata Browsing and Maintenance capabilities.

Corporate Metadata Repository – Microsoft Internet Explorer

Figure 3.3.1. The caDSR Home page

3.3.1 The caDSR Search Interfaces
Clicking on any of the Browse/Maintain buttons in the top panel brings up a screen

providing search and editing tools for that administered component type. The screen shot
in Figure 3.3.2 shows the display that appears after clicking the Browse/Maintain option for
data concepts. Like all of the administered components, the search criteria for a data
concept include the component’s name(s), definition(s), context, workflow status, and
version.

100

Figure 3.3.2. The Browse/Maintain screen associated with Data Concepts.

By default, preferred names and preferred definitions are used to identify matching
components, but this can be overridden using the radio buttons at the top of the display.
Similarly, the default of searching only the latest version can be reset to search all versions
of the data registry, using the radio button on the bottom.

The only search criteria that is unique to data concepts in Figure 3.3.2 is the Conceptual
Domain field. In general, each context defined in the caDSR has a corresponding default
conceptual domain. Clicking on the List option alongside the text box for Conceptual
domain will bring up a popup window listing the defined concept domains to which the
user has access, as in Figure 3.3.3. Selecting any of these concept domains will in turn, fill
the corresponding text box on the Browse/Maintain screen with that name and close the
popup display. The List options associated with Context and Workflow Status in Figure
3.3.2 behave similarly.

Figure 3.3.3. A list of Concept Domains to use as search criteria.

Each of the other administered components, in addition to the standard search criteria
shown in Figure 3.3.2, has its own supplemental criteria which are unique to that
component type. Data elements have Data Concept and Value Domain fields; concept
domains have a Value Meaning field; and classification schemes have a Classification

101

Scheme Type field. Value domains have the largest number of associated search criteria
fields, which include: Data Type, Format, Domain Type, Unit of Measure, and Character
Set. These additional search criteria fields have popup windows associated with them to
provide the user with the list of possible values.

3.3.1.1 Basic Search
All of the Browse/Maintain screens support basic search, with interfaces similar to that

shown in Figure 3.2.2. Basic search allows the user to search for components by name,
definition, context, workflow status, and/or version.

The first name given to an Administered Component is stored as its preferred name.
When searching by name, candidate matches are ranked differently depending on whether
the user has selected the “Preferred Name” or “All Names” radio button. If the “Preferred
Name” button is selected, then the name entered in the Name/Alias field will only be
searched against preferred names; otherwise, all names will be searched.

It is also possible to search for a data element using its CDE Identifier. The CDE
Identifier is a unique seven-digit number assigned to each data element, with the name of
the disease associated with that element appended to the number (e.g. “2001101LUNG”).
Search by CDE Identifier can be done by clicking on the “All Names” radio button and
entering the partial or full CDE Identifier into the “Name/Alias” field. Wildcard matching
can also be used. For example, “2001101%” can be used to retrieve “2001101LUNG.”

As with preferred names, the first definition given to an Administered Component is
also recorded as the preferred definition, and selecting the “Preferred Definition” radio
button will limit the matching to preferred definitions only. The remaining search fields
common to all of the basic search screens are:

• Long Name: This is the Long Name given to an Administered Component. In some
implementations, this field may be used for a name with an agreed upon naming
convention (such as recommended by ISO/IEC 11179).

• Workflow Status: This is the administrative (workflow) status of an Administered
Component (such as Draft, Reviewed, Approved, Released). Select the List icon to get
the list of values.

• Context: This is the context of the Administered Component’s preferred name (e.g. the
first Context associated with an AC).

• Latest Version or All Versions: The caDSR allows you to retrieve just the latest version
of an AC or all versions of the AC. An Administered Component is uniquely identified
by its preferred Name, preferred Context, and Version.

3.3.1.2 Full Text Search
The interfaces for classification schemes and data concepts support only basic search.

The other components, i.e., data elements, value domains, and concept domains, have
search interfaces which also support full-text search. Full Text searching (Figure 3.3.4)
allows you to enter unstructured, full text information about a given administered
component. This full text combines the name, long name, description fields, and other

102

relevant fields. If there is a hit on the search term in any of the combined text, the
administered component is returned.

Full text searches are case insensitive, and support wildcard (%) matching. Specific
search options are provided via the drop-down selection boxes surrounding the textboxes,
and up to three text strings can be specified. These strings can be combined differently
according to the selected Boolean operator.

Figure 3.3.4. Full Text Search Screen

The leftmost drop-down selection boxes specify the Boolean operators to be used in
combining the expressions occurring in the preceding and subsequent textboxes. The
choices include and, or, not, and near, where:

• and evaluates to TRUE if the candidate component matches both expressions;

• or evaluates to TRUE if the candidate component matches either expression;

• not evaluates to TRUE if the candidate component matches the first expression but does
not match the second expression;

• near evaluates to TRUE if the first expression occurs “near” the second expression in
the candidate component’s matching terms.

The Boolean operators are evaluated in top-to-bottom order, and there is no precedence
to the operators other than that defined by position.

The next drop-down selection box (“Match” in Figure 3.3.4) allows the user to specify
further constraints on how the matching is done; options include Match, Starts with, Stem,
and Soundex. The default, Match, specifies that unconstrained lexicographic matching
should be used. The other options are as follows:

• Starts with searches for text that starts with the expression provided in the textbox;

• Stem searches for text that shares the same stem as the textbox expression;

103

• Soundex searches for text that “approximately” sounds like the search expression (e.g.
“reed” and “read”, “wage” and “age”, etc.). Soundex matching is based on a very
simple encoding which approximately captures the significant phonemes in a string.

Finally, each search condition can also be prioritized as High, Medium (the default), or
Low. Hits on high priority expressions will be returned first, followed by medium, and then
low priority expressions. Only those components whose text satisfy all of the search criteria
(as combined by the selected Boolean operators) are returned by the full text search.

3.3.1.3 11179 Attribute Search

Figure 3.3.5. 11179 Attributes Search.

The search interface for data elements provides one additional mode of search – the
11179 Attribute Search. The 11179 Attributes search interface (Figure 3.5.5) allows the
user to search by the ISO/IEC 11179 attributes in four categories: Naming and
Identification, Definitional, Representational, and Administrative. The first two categories
simply provide subsets of the search fields available with the Basic Search interface.
Figure 3.5.5 shows the interface when the third tab, Representational, has been selected.
As shown there, this interface allows the search to drill down into the data element’s value
domain attributes without explicitly using the value domain’s search interface.

3.3.1.4 Search Results
Search results are returned according to the specified search criteria and the individual

user’s privileges, with the results listed in a table (Figure 3.3.6) immediately below the
search form. Like all search result tables, the leftmost column of the table in Figure 3.3.6
displays a Browse icon in the form of a magnifying glass. Clicking on that icon brings up
the browse page (Figure 3.3.7) for the administered component in that row of the table.

If the user has editing permissions for that record, then the second column displays a
Modify icon in the form of a pencil. Alternatively, if the user does not have editing
privileges, the second column is empty, as in Figure 3.3.6. Note that if the user has neither
browse nor edit permissions on a given component, that record will not be displayed in the
results table – even if its attributes otherwise matched the search criteria.

The remaining columns in the results table correspond to the fields in the component
type’s search form. Thus, for a data element, the fields are: Name/Alias, Type of Name,
Preferred Name, Context, Version, Long Name, Workflow Status, Data Concept,

104

Definition, Type of Definition, and Value Domain. Similarly the results table for a value
domain will contain all of these fields except Data Concept and Value Domain, and will
add the fields: Domain Type, Data Type, Unit of Measure, Format, and Character Set.

Figure 3.3.6. The Search Results Table

Large search result tables also have navigation buttons at the bottom of the list. If the
result set is large, you may need to scroll through sets of records using the Next, Previous,
First, and Last buttons. The ReQuery button re-executes the same query; the Count button
shows the total number of records that met the search criteria. A user may execute a new
search by pressing Clear, entering new search criteria, and pressing Search again.

Figure 3.3.7 shows the browse screen for the ADDITIONAL_RACE_ETHNICITY data
element. The Valid Values tab has been selected, and the main frame shows the table of
permissible values for an element of this type. The screen also provides access to
information about the Value Domain, Data Concept, and any documents associated with
this element. Each node in the tree-structured display on the left is selectable, and provides
an alternate way of navigating through the information associated with the data element.

3.3.1.5 Summary of Search Screen Behaviors
• The Search criteria fields are not case sensitive;

• If search criteria are provided in multiple fields, a logical AND is applied – i.e. the
matched component must satisfy all of the criteria;

105

• When no criteria are specified, the search retrieves all records for that component type
which the user has access to;

• The percent sign (%) may be used for wildcard matching;

• List icons allow the user to choose from a list of valid values for the given field.

• The Search button invokes the actual search;

• The Clear button resets all fields in the search form;

Figure 3.3.7. Browsing Screen for ADDITIONAL_RACE_ETHNICITY

3.3.2 Maintenance Screens for Administered Components
Maintenance screens combine the appearance of browsing screens with the

functionality of the displays used to create new components. Figure 3.3.8 shows the
maintenance screen for a data element named COORDINATING_GRP_PROTOCOL_NUM.

The maintenance screen is reached by clicking the pencil icon displayed in the second
column of the results table. Editing capabilities include adding, updating, and deleting the
information fields shown in the maintenance screen. The tree icons in the left panel
provide access to editing screens for the corresponding attributes of the component. The
maintenance screen for a particular administered component is only accessible to users
having Update and Delete privileges.

106

Figure 3.3.8. Maintenance screen.

3.3.3 Creating Administered Components
Each of the search screens described in Section 3.3.1 include a rightnost tab with the

keyword insert displayed on it. Clicking on this tab for the data element search interface
brings up the screen shown in Figure 3.3.9 below. Alternatively, from the maintenance
screen for an adinistered component (e.g. Figure 3.3.8), you can press the Add New button
(bottom, right) to create a new component.

Figure 3.3.9 shows the interface for creating a new data element component. As some
of a new component’s attribute values may themselves be administered components (e.g.
the Value Domain or Data Concept for a Data Element), the interface provides mechanisms
for selecting from the set of currently defined components, as well as recrusively creating a

107

new component on-the-fly. The New icon allows you to (1) create the new component, and
(2) subsequently assign it via the List icon.

Figure 3.3.9. Creating a new data element component

The caDSR interface requires that most of the mandatory attributes of ISO/IEC 11179
must be supplied. Exceptions are the submission, registration, and stewardship
assignments, which are not included in the form. Required fields are indicated by an
asterisk preceding the attribute name. If the value for a mandatory field is not currently
known, enter ‘UNASSIGNED’. The ISO/IEC 11179 Compliancy Test will look for and
warn users of mandatory fields with an entry of ‘UNASSIGNED’.

Once the administered component has been created, the application will display the
maintenance screen, where you can add additional relationships and information for that
component.

108

3.4 Overview of the caDSR Data Model
The last section of this chapter contains a complete diagram of all of the tables in the

cancer Data Standards Repository (caDSR). This section serves as an introduction to the
full-scale data model, as it presents reduced views of the system

Figure 3.2.2 of Section 3.2 illustrated the hierarchical relationships among the ISO/IEC
11179 metadata components defined in the CaDSR data model. The tables representing
these components are listed in Table 3.4.1, and their relationships to one another are
summarized in Figure 3.4.1.

Component Name Table Name
Data Elements DATA_ELEMENTS (DE)
Value Domains VALUE_DOMAINS (VD)
Data Element Concepts DATA_ELEMENT_CONCEPTS (DEC)
Conceptual Domains CONCEPTUAL_DOMAINS (CD)
Classification Schemes CLASSIFICATION_SCHEMES (CS)
Administered Components ADMINISTERED_COMPONENTS (AC)
Contexts CONTEXTS (CONTE)
Classification Schemes Items CLASS_SCHEME_ITEMS (CSI)
Administered Component Statuses AC_STATUS_LOV (ASL)

Table 3.4.1. The metadata component tables in the data model

At the top level, the CONTEXTS and AC_STATUS_LOV tables are linked to all of the
remaining tables – with the exception of the CLASS_SCHEME_ITEMS table. These links
correspond to foreign keys defined in those tables. For example, the VALUE_DOMAINS table
has a foreign key named asl_name, which corresponds to the primary key (asl_name) in the
AC_STATUS_LOV table. The link connecting the tables is labeled by catenating the
abbreviated names of the two tables and appending the suffix _FK to the result.

DE_DEC_FK

CS_ASL_FK

VD_ASL_FK

DEC_ASL_FK AC_ASL_FK

CS_CONTE_FK

AC_CONTE_FK

DE_ASL_FK DE_VD_FK

VD_CONTE_FK

DE_CONTE_FK

CD_CONTE_FK
CD_ASL_FK

DEC_CD_FK

DEC_CONTE_FK
VD_CD_FK

CONTEXTS AC_STATUS_LOV

VALUE_DOMAINS CLASS_SCHEME_ITEMS

CLASSIFICATION_SCHEMES

DATA_ELEMENTS

ADMINISTERED_COMPONENTSDATA_ELEMENT_CONCEPTS

CONCEPTUAL_DOMAINS

Figure 3.4.1. An abstract view of the caDSR data model

109

Note that these links are unidirectional; they define many-to-one relations – not many-
to-many relations. Thus for example, each data element maps to a single context, but many
can map to the same single context.

The links between the CLASSIFICATION_SCHEMES, CLASS_SCHEME_ITEMS, and
ADMINISTERED_COMPONENTS tables are an abstraction of the actual data model. Here,
many-to-many relations are defined between these tables, but not directly. As illustrated in
Figure 3.4.2, two intermediate tables, CS_CSI and AC_CSI are defined which implement
these relations while maintaining normalized tables.

AC CSI AC FK AC_CSI_CS_CS

ADMINISTERED_COMPONENTS

CS_CSI_CS_FK CS_CSI_CSI_FK

CLASS_SCHEME_ITEMSCLASSIFICATION_SCHEMES

AC_CSI

CS_CSI

Figure 3.4.2. Auxillary tables used to implement many-to-many relations

The data model uses simple naming conventions to facilitate the interpretation of table
and key names:

• Table names are abbreviated as the catenation of the first letter of each word when they
are incorporated into the names of auxillary tables or key names. For example, the
VALUE_DOMAINS table is abbreviated as VD. Exceptions are one-word names, such as
CONTEXTS. In these cases, the full name is truncated, as in CONTE_IDSEQ, the primary
key occurring in the CONTEXTS table.

• The primary key for a table is in most cases generated by concatenating the abbreviated
table name with the string IDSEQ. For example, the primary key for VALUE_DOMAINS is
VD_IDSEQ. The alternative convention is to append the string NAME in place of IDSEQ.

• The foreign key name is identical to the name of the primary key in the foreign table it
references. Thus the foreign key CONTE_IDSEQ is used in the VALUE_DOMAINS table to
reference the CONTEXTS table.

• In diagrams of the data model, foreign keys are represented as many-to-one relations.
The link connecting the two tables is labeled by concatenating the names of the two
tables and appending the suffix _FK to the result. For example, the VALUE_DOMAINS
table contains the foreign key CD_IDSEQ, which references the primary key in the.
CONCEPTUAL_DOMAINS table. In Figure 3.4.1, this link is labeled VD_CD_FK.

• Table names ending in _LOV contain a list of values.

• Table names ending in _RECS store relationships between records occuring in the same
(external) table.

110

Figure 3.4.3 elaborates on the reduced view of the data model, introducing several
additional auxillary tables. In two cases several tables have been collapsed into a single
“multi-table” icon in order to simplify the diagram. Specifically, the tables
PROPERTIES_LOV and OBJECT_CLASSES_LOV are collapsed into one, as are the tables
DATA_TYPES_LOV, FORMATS_LOV, CHARACTER_SET_LOV, and UNIT_OF_MEASURES_LOV. In
these cases, the collapsed tables share the same connectivities.

CONTEXTS

CONCEPTUAL_DOMAINS

ADMINISTERED_COMPONENTS

VALUE_DOMAINS

DATA_ELEMENT_CONCEPTS

DATA_ELEMENTS

CLASSIFICATION_SCHEMES

CD_VMS

VALUE_MEANINS_LOV

PERMISSIBLE_VALUES

VD_PVS

AC_STATUS_LOV

VD_PV_RECS

DATA_TYPES_LOV
FORMATS_LOV

CHARACTER_SET_LOV
UNIT_OF_MEASURES_LOV

VD_RECS

RELATIONSHIPS_LOV

CLASS_SCHEME_ITEMS

DE_RECS

COMPLEX_REP_TYPE

COMPLEX_DATA_ELEMENTS
COMPLEX_DE_RELATIONSHIPS

CSI_RECS

CSI_TYPES_LOV

CS_CSI

AC_CSI

PROPERTIES_LOV
OBJECT_CLASSES_LOV

DEC_RECS

CS_RECS

LANGUAGES_LOV

DEFENITIONS

DESIGNATION_TYPES_LOV

DESIGNATIONS

AC_TYPES_LOV

REFERENCE_DOCUMENTS

DOCUMENT_TYPES_LOV

CS_TYPES_LOV

PROGRAM_AREAS_LOV LIFECYCLES_LOV

Figure 3.4.3. Auxillary tables used to implement many-to-many relations.

111

Several of the tables in Figure 3.4.3 store relationships between records occuring in the
same table, and have names ending in _RECS. Each of these has two foreign keys into the
table over which the relations are defined.

The next section provides a catalog of the caDSR tables, and the final section of this
chapter contains the complete data model, including all tables along with their relations and
field names. A separate document, The caCORE 1.0 caDSR Database API, provides
detailed information on the PL/SQL stored procedures.

112

3.5 The caDSR Table Catalog
The definitions used below should be interpreted as follows:

• Foreign keys lists the names of the tables into which the current table holds foreign
keys.

• Referenced by lists the names of the tables which hold foreign keys into the current
table

• Linked to lists the tables to which the current table has indirect relations which are
implemented by intermediary tables.

AC_CSI: links administered components (AC) to classification scheme items (CSI).
Foreign keys: ADMINISTERED_COMPONENTS, CS_CSI
Referenced by: none

AC_STATUS_LOV (ASL): stores the administrative status of administered components (AC).
Foreign keys: none.
Referenced by: ADMINISTERED_COMPONENTS, CLASSIFICATION_SCHEMES,

CONCEPTUAL_DOMAINS, DATA_ELEMENTS, DATA_ELEMENT_CONCEPTS,
VALUE_DOMAINS

AC_TYPES_LOV (ATL): stores the types of administered components and their possible values.
Foreign keys: none.
Referenced by: ADMINISTERED_COMPONENTS

ADMINISTERED_COMPONENTS (AC): stores information about objects that require naming and
administration (administered components).
Foreign keys: CONTEXTS, AC_STATUS_LOV, AC_TYPES_LOV.
Referenced by: REFERENCE_DOCUMENTS, DEFINITIONS, DESIGNATIONS.
Linked to: CLASSIFICATION_SCHEMES (AC_CSI)

CD_VMS: stores the value meanings (VMS) for a conceptual domain (CD).
Foreign keys: VALUE_MEANINGS_LOV, CONCEPTUAL_DOMAINS
Referenced by: none

CHARACTER_SET_LOV (CSL): stores character set values (e.g. ASCII, Unicode) for VDs.
Foreign keys: none.
Referenced by: VALUE_DOMAINS

CLASS_SCHEME_ITEMS (CSI): Stores classification scheme items
Foreign keys: CSI_TYPES_LOV
Referenced by:CSI_RECS, CS_CSI
Linked to: CLASSIFICATION_SCHEMES (CS_CSI), ADMINISTERED_COMPONENTS (AC_CSI)

113

CLASSIFICATION_SCHEMES (CS): stores classification schemes used to classify DEs.
Foreign keys: CONTEXTS, AC_STATUS_LOV, CS_TYPES_LOV.
Referenced by: CS_RECS, CS_CSI.
Linked to: CLASS_SCHEME_ITEMS (CS_CSI), ADMINISTERED_COMPONENTS (AC_CSI)

COMPLEX_DATA_ELEMENTS: stores information about whether or not a data element is complex
(derived from a more primitive element).
Foreign keys: COMPLEX_REP_TYPE_LOV, DATA_ELEMENTS
Referenced by: COMPLEX_DE_RELATIONSHIPS

COMPLEX_DE_RELATIONSHIPS: stores information regarding how a data element was derived.
Foreign keys: COMPLEX_DATA_ELEMENTS, DATA_ELEMENTS
Referenced by: none

COMPLEX_REP_TYPE_LOV: stores the types of derivations for data elements, e.g., ’CALCULATED’,
’COMPLEX RECODE’, ’COMPOUND’, ’CONCATENATION’, etc..
Foreign keys: none.
Referenced by: COMPLEX_DATA_ELEMENTS

CONCEPTUAL_DOMAINS (CD): stores the conceptual domain components which define the
semantic interpretations of data elements.
Foreign keys: CONTEXTS
Referenced by: CD_VMS, DATA_ELEMENT_CONCEPTS, VALUE_DOMAINS.

CONTEXTS (CONTE): stores information about contexts, components describing an application
environment or a discipline in which a name is applied.
Foreign keys: LIFECYCLES_LOV, PROGRAM_AREAS_LOV.
Referenced by: ADMINISTERED_COMPONENTS, CLASSIFICATION_SCHEMES, CONCEPT_DOMAINS,

DATA_ELEMENTS, DATA_ELEMENT_CONCEPTS, VALUE_DOMAINS, VD_PVS,
DESIGNATIONS, DEFINITIONS.

CS_CSI: stores the relationships between classification schemes (CS) and classification scheme
items (CSI).
Foreign keys: CLASSIFICATION_SCHEMES, CLASS_SCHEME_ITEMS
Referenced by: AC_CSI

CS_RECS: defines the relationships between two classification schemes (Part-of, Similar-To, etc).
Foreign keys: RELATIONSHIPS_LOV, CLASSIFICATION_SCHEMES
Referenced by: none

CS_TYPES_LOV: specifies the type of a classification scheme (CS).
Foreign keys: none.
Referenced by: CLASSIFICATION_SCHEMES

CSI_RECS: defines relationships between classification scheme items (Part-of, Similar-To, etc).
Foreign keys: RELATIONSHIPS_LOV, CLASS_SCHEME_ITEMS

114

Referenced by: None

CSI_TYPES_LOV: specifies the type of a classification scheme item (CSI).
Foreign keys: none.
Referenced by: CLASS_SCHEME_ITEMS

DATA_ELEMENT_CONCEPTS (DEC):
Foreign keys: CONTEXTS, CONCEPTUAL_DOMAINS, AC_STATUS_LOV, PROPERTIES_LOV,
OBJECT_CLASSES_LOV
Referenced by: DEC_RECS,DATA_ELEMENTS

DATA_ELEMENTS (DE): stores the actual data elements.
Foreign keys: AC_STATUS_LOV, CONTEXTS, DATA_ELEMENT_CONCEPTS, VALUE_DOMAINS.
Referenced by: DE_RECS, COMPLEX_DATA_ELEMENTS, COMPLEX_DE_RELATIONSHIPS.

DATATYPES_LOV: stores values for datatypes (e.g. character, number, date) for VDs.
Foreign keys: none.
Referenced by: VALUE_DOMAINS

DE_RECS: defines relationships (Part-of, Similar-To etc) between data elements.
Foreign keys: RELATIONSHIPS_LOV, DATA_ELEMENTS
Referenced by: none

DEC_RECS: defines relationships (Part-of, Similar-To etc) between data element concepts.
Foreign keys: RELATIONSHIPS_LOV, DATA_ELEMENT_CONCEPTS
Referenced by: none

DEFINITIONS: stores alternate definitions for administered components.
Foreign keys: LANGUAGES_LOV, CONTEXTS, ADMINISTERED_COMPONENTS
Referenced by: none

DESIGNATIONS stores alternate designations or names for administered components.
Foreign keys: LANGUAGES_LOV, DESIGNATIONS_TYPE_LOV, CONTEXTS,

ADMINISTERED_COMPONENTS
Referenced by: none

DESIGNATIONS_TYPES_LOV: stores the types of possible designations, such as synonym.
Foreign keys: none.
Referenced by: DESIGNATIONS

DOCUMENT_TYPES_LOV: stores the possible types of reference documents.
Foreign keys: none.
Referenced by:REFERENCE_DOCUMENTS

115

FORMATS_LOV: stores the possible formats (e.g. number formats, date formats) for value
domains.
Foreign keys: none.
Referenced by:VALUE_DOMAINS

LANGUAGES _LOV: defines the possible languages.
Foreign keys: none.
Referenced by:DEFINITIONS, DESIGNATIONS, REFERENCE_DOCUMENTS

LIFECYCLES_LOV (LL): represents the lifecycle of a context.
Foreign keys: none.
Referenced by:CONTEXTS

OBJECT_CLASSES_LOV: represents the object classes of data element concepts.
Foreign keys: none.
Referenced by:DATA_ELEMENT_CONCEPTS

PERMISSIBLE_VALUES (PV): stores the allowed values for value domains.
Foreign keys: VD_PVS_HST
Referenced by: none.

PROGRAM_AREAS_LOV (PAL): represents the program area of a context.
Foreign keys: none.
Referenced by:CONTEXTS

PROPERTIES_LOV: represents the properties of data elements.
Foreign keys: none.
Referenced by:DATA_ELEMENTS

REFERENCE_DOCUMENTS: stores the reference documents of an administered component.
Foreign keys: ADMINISTERED_COMPONENTS, DOCUMENT_TYPES_LOV, LANGUAGES _LOV
Referenced by: none

RELATIONSHIPS_LOV: stores the possible types of relationships.
Foreign keys: none.
Referenced by: DEC_RECS, VD_PV_RECS, VD_RECS, DE_RECS, CSI_RECS, CS_RECS

UNIT_OF_MEASURES_LOV: stores values for units of measure (e.g. feet, miles, dollars, hours) for
VDs.
Foreign keys: none.
Referenced by:VALUE_DOMAINS

VALUE_DOMAINS (VD): stores the value domain components, which encapsulate the sets of
permissible values that can populate data elements.
Foreign keys: CONTEXTS, CONCEPTUAL_DOMAINS, AC_STATUS_LOV, DATATYPES_LOV,

UNIT_OF_MEASURES_LOV, CHARACTER_SET_LOV, FORMATS_LOV

116

Referenced by: VD_RECS, VD_PVS, DATA_ELEMENTS.
Linked to: PERMISSIBLE_VALUES (VD_PVS)

VALUE_MEANINGS_LOV: stores the list of value meanings used by the CD_VMS and
PERMISSIBLE_VALUES tables.
Foreign keys: none.
Referenced by:PERMISSIBLE_VALUES,CD_VMS

VD_PV_RECS: stores the relationships by which a permissible value is related to other permissible
values.
Foreign keys: RELATIONSHIPS_LOV, VD_PVS
Referenced by: None

VD_PVS: associates value domains (VD) with their permissible values (PV).
Foreign keys: VALUE_DOMAINS,CONTEXTS, PERMISSIBLE_VALUES
Referenced by: VD_PV_RECS

VD_RECS: defines relationships (Part-of, Similar-To etc) between two value domains.
Foreign keys: VALUE_DOMAINS, RELATIONSHIPS_LOV
Referenced by: None

117

3.6 caDSR Entity Relationships

118

PROTOCOLS_EXT

PROTO_IDSEQ
VERSION
CONTE_IDSEQ
PREFERRED_NAME
PREFERRED_DEFINITION
ASL_NAME
LONG_NAME
LATEST_VERSION_IND
DELETED_IND
BEGIN_DATE
END_DATE
PROTOCOL_ID
TYPE
PHASE
LEAD_ORG
CHANGE_TYPE
CHANGE_NUMBER
REVIEWED_DATE
REVIEWED_BY
APPROVED_DATE
APPROVED_BY
CHANGE_NOTE

VD_PVS

VP_IDSEQ
VD_IDSEQ
PV_IDSEQ
CONTE IDSEQ

PERM

V

CONCEPTUAL_DOMAINS

CD_IDSEQ
VERSION
PREFERRED_NAME
CONTE_IDSEQ
PREFERRED_DEFINITION
DIMENSIONALITY
LONG_NAME
ASL_NAME
DATE_CREATED
LATEST_VERSION_IND
DELETED_IND
CREATED_BY
DATE_MODIFIED
MODIFIED_BY
BEGIN_DATE
END_DATE
CHANGE_NOTE

CHARACTER_SET_LO

CHAR_SET_NAME
DESCRIPTION
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY
CREATED_BY

DATATYPES_LOV

DTL_NAME
DESCRIPTION
COMMENTS
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

FORMATS_LOV

FORML_NAME
DESCRIPTION
COMMENTS
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

UNIT_OF_MEASURES_

UOML_NAME
PRECISION
DESCRIPTION
COMMENTS
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

VALUE_DOMAINS

VD_IDSEQ
VERSION
PREFERRED_NAME
CONTE_IDSEQ
PREFERRED_DEFINITION
DTL_NAME
BEGIN_DATE
CD_IDSEQ
END_DATE
VD_TYPE_FLAG
ASL_NAME
CHANGE_NOTE
UOML_NAME
LONG_NAME
FORML_NAME
HIGH_VALUE_NUM
LOW_VALUE_NUM
MAX_LENGTH_NUM
MIN_LENGTH_NUM
DECIMAL_PLACE
LATEST_VERSION_IND
DELETED_IND
DATE_CREATED
CREATED_BY
DATE_MODIFIED

PROGRAM_AREAS_LO

PAL_NAME
DESCRIPTION
COMMENTS
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

LIFECYCLES_LOV

LL_NAME
DESCRIPTION
COMMENTS
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

CONTEXTS

CONTE_IDSEQ
NAME
LL_NAME
PAL_NAME
DESCRIPTION
LANGUAGE
VERSION
CREATED_BY
DATE_CREATED
MODIFIED_BY

C
O
N
TE
_L
L_
FK

C
O
N
TE
_P
AL
_F
K

VD
_C
O
N
TE
_F
K

VD
_U
O
M
L_
FK

VD
_F
O
R
M
L_
FK

VD
_D
TL
_F
K

VD
_C
SV
_F
K

VD
_C
D
_F
K

PV
VM
V
FK

VP
_P
V_
FK

VP
_V
D
_F
K

VP
_C
O
N
TE
_F
K

D
E_
C
O
N
TE
_F
K

_F
K

PRO
TO_

ASV
_FK

V
FK

Q
C
_C
O
T_
FK

ADMINIS

CM_STATES_LOV

CMSL_NAME
DESCRIPTION
COMMENTS
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

OBJECT_CLASSES_LO

OCL_NAME
DESCRIPTION
COMMENTS
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

PROPERTIES_LOV

PROPL_NAME
DESCRIPTION
COMMENTS
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

CD_VMS

CV_IDSEQ
CD_IDSEQ
SHORT_MEANING
DESCRIPTION
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

MISSIBLE_VALUES

PV_IDSEQ
VALUE
SHORT_MEANING
MEANING_DESCRIPTION
BEGIN_DATE
END_DATE
HIGH_VALUE_NUM
LOW_VALUE_NUM
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

VALUE_MEANINGS_LOV

SHORT_MEANING
DESCRIPTION
COMMENTS
BEGIN_DATE
END_DATE
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

AC_STATUS_LOV

ASL_NAME
DESCRIPTION
COMMENTS
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

Diagram : DER 1.2.1 SERVER MODEL V3
Title : SBR V 1.2.1 REV Engineered
Modified : 16 October 2001 14:28:34
Author :
Application System : SBR v1.2.1 Reverse Engineered
Workarea : SBR Development

C
D
_C
O
N
TE
_F
K

CD_ASL
_FK

VD_
ASL

_FK

PV
_V
M
V_
FK

C
V_
VM
V_
FK

C
V_
C
D
_F
K

D
EC
_A
SL
_F
K

D
EC
_C
O
N
TE
_F
K

D
EC
_C
D
_F
K

DE_ASL_FK

C
S_
AS
L_
FK

C
S_
C
O
N
TE
_F
K

AC_CSL_FK

AC_ASL_FK

AC
_C
O
N
TE
_F
K

D
EF
IN
_C
O
N
TE
_F
K

D
ES
IG
_C
O
N
TE
_F
K

AC_TYPES_LOV

ACTL_NAME
DESCRIPTION
COMMENTS
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

ORGANIZATIONS

ORG_IDSEQ
RAI
NAME
RA_IND
MAIL_ADDRESS
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

SUBMITT

S
N
O
T
S
P
F
T
M
E
D
C
D
M

STEWARDS

STEWA_IDSEQ
NAME
ORG_IDSEQ
TITLE
PHONE_NUMBER
FAX_NUMBER
TELEX_NUMBER
MAIL_ADDRESS
ELECTRONIC_MAIL_ADDRESS
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

REGISTRARS

REGIS_IDSEQ
NAME
ORG_IDSEQ
TITLE
PHONE_NUMBER
FAX_NUMBER
TELEX_NUMBER
MAIL_ADDRESS
ELECTRONIC_MAIL_ADDRES
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

REG_STATUS_LOV

REGISTRATION_STA
DESCRIPTION
COMMENTS
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

AC_REGISTRATIONS

ACTIONS_LOV

AL_NAME
DESCRIPTION
COMMENTS
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

TERED_COMPONENTS

AC_IDSEQ
ACTL_NAME
VERSION
BEGIN_DATE
PREFERRED_NAME
END_DATE
CONTE_IDSEQ
PREFERRED_DEFINITION
STEWA_IDSEQ
CMSL_NAME
CHANGE_NOTE
ASL_NAME
LONG_NAME
UNRESOLVED_ISSUE
ORIGIN
LATEST_VERSION_IND
DELETED_IND
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

SC_CONTEXTS

CONTE_IDSEQ
SCL_NAME
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

SC
C
_C
O
N
TE
_F
K

SO
U
R
C
E_
AC
_F
K

L_
F K

AH
_A
C
_F
K

AR
_A
C
_F
K

AR
_R
SL
_F
K

AR
_R
EG
IS
_F
K

AC
_S
TE
W
A_
FK

AR
_O
R
G
_F
K

ST
EW

A_
O
R
G
AN
_F
K

SU
BM
I_
O
R
G
_F
K

R
EG
IS
_O
R
G
AN
_F
K

AC
_A
C
TL
_F
K

AW
R

AW
R_ASL_TO

_

UI_METADATA

NAME
HOST

SD_DE

SDDE_IDSEQ
SD_IDSEQ
DE_IDSEQ
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

RULES_LOV

RULE_IDSEQ
DESCRIPTION
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY
CREATED_BY

META_UTIL_STATUSES

UTILITY_NAME
STATUS_CODE
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

META_TEXT

MT_IDSEQ
AC_IDSEQ
ACTL_NAME
TEXT_TYPE
TEXT

LOOKUP_LOV

LOOKUP_NAME
DESCRIPTION
HYPERLINK
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY
LOOKUP_TYPE

DR$METATEXT_ID

ROW_NO
DATA

DR$METATEXT_IDX

NLT_DOCID
NLT_MARK

DR$METATEXT_ID

DOCID
TEXTKEY

DR$METATEXT_IDX$I

TOKEN_TEXT
TOKEN_TYPE
TOKEN_FIRST
TOKEN_LAST
TOKEN_COUNT
TOKEN_INFO

ADVANCE_RPT_LOV

NAME
DESCRIPTION
COMMENTS
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

UI_AC_TYPES_LOV

ACTL_NAME
DESCRIPTION
COMMENTS
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

S_AC_STANDARDS

ACST_IDSEQ
STAND_NAME
AC_IDSEQ
CSL_NAME
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

S_COMPLIANCE_STAT

CSL_NAME
DESCRIPTION
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

S_MANDATORY_TYPES

MTL_NAME
DESCRIPTION
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

S_STANDARDS_LOV

STAND_NAME
DESCRIPTION
COMMENTS
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

S_STANDARD_ATTRI

SA_IDSEQ
STAND_NAME
ATTRIBUTE_NAME
MTL_NAME
DESCRIPTION
CONDITION
DATA_TYPE
DATA_LENGTH
DATA_PRECISION
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

S_CMR_META_MODELS

CMM_IDSEQ
SCHEMA_NAME
TABLE_NAME
COLUMN_NAME
MANDATORY_IND
ACTL_NAME
DATA_TYPE
DATA_LENGTH
DATA_PRECISION
DBLINK
EXCEPTION_VALUE
DESCRIPTION
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

S_AC_STD_APPLICABILITIES

ASA_IDSEQ
STAND_NAME
ACTL_NAME
APPLICABILITY_IND
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

S_CMM_SA_MAP

CSM_IDSEQ
SA_IDSEQ
CMM_IDSEQ
DESCRIPTION
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

UI_LINK_LINK_RE

UILL_IDSEQ
PARENT_LINK
CHILD_LINK_I

UI_ITEMS

UII_IDSEQ
DISPLAY_TITLE
ITEMS_TITLE
TOOL_TIP

UI_ACTIVITIES_LOV

UIAL_NAME
DESCRIPTION
COMMENTS

UI_LINKS

UIL_IDSEQ
NAME
BASE_URL
TARGET_FRAME
PARENT_LINK

TERS

SUB_IDSEQ
NAME
ORG_IDSEQ
TITLE
SUBMIT_DATE
PHONE_NUMBER
FAX_NUMBER
TELEX_NUMBER
MAIL_ADDRESS
ELECTRONIC_MAIL_ADDRES
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

SS

DER_VERSION

APP_VERSION
RELEASE_DATE
DESCRIPTION
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

AR
_S
U
B_
FK

U
A_
O
R
G
_F
K

U
IL
_F
K U
IIL
R
_U
IL
_F
K

AV
_F
K

II_
FK

U
IL
L_
C
_U
LK
_F
K

U
IL
L_
P_
U
LK
_F
K

C
SM
_C
M
M
_F
K

C
SM
_S
AE
_F
K

SA
_S
TA
N
D
_F
K

ST
D
BM
_S
TA
N
D
_F
K

SA
E_
M
TL
_F
K

AC
ST
_C
SL
_F
K

AC
ST
_S
TA
N
D
_F
K

SA
E_
U
AT
L_
FK

TS_TYPE_LOV_EX

TSTL_NAME
DESCRIPTIO
DATE_CREAT
CREATED_BY
DATE_MODIF

TEXT_STRINGS_EXT

TS_IDSEQ
QC_IDSEQ
TSTL_NAME
TS_TEXT
TS_SEQ
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

REVIEWER_FEEDBAC

REVIEWER_FEEDBA
REVIEWER_FEEDBA
DESCRIPTION
DATE_CREATED
CREATED_BY
DATE_MODIFIED

QUEST_CONTENTS_EXT

QC_IDSEQ
VERSION
QTL_NAME
CONTE_IDSEQ
ASL_NAME
PREFERRED_NAME
PREFERRED_DEFINITION
PROTO_IDSEQ
DE_IDSEQ
VP_IDSEQ
QC_MATCH_IDSEQ
QC_IDENTIFIER
QCDL_NAME
LONG_NAME
LATEST_VERSION_IND
DELETED_IND
BEGIN_DATE
END_DATE
MATCH_IND
NEW_QC_IND
HIGHLIGHT_IND
REVIEWER_FEEDBACK_ACTION
REVIEWER_FEEDBACK_INTERNAL
REVIEWER_FEEDBACK_EXTERNAL
SYSTEM_MSGS
REVIEWED_BY
REVIEWED_DATE
APPROVED_BY
APPROVED_DATE
CDE_DICTIONARY_ID
DATE_CREATED

QC_TYPE_LOV_EX

QTL_NAME
DESCRIPTION
DATE_CREAT
CREATED_BY
DATE_MODIF

QC_RECS_EXT

QR_IDSEQ
P_QC_IDSEQ
C_QC_IDSEQ
DISPLAY_ORDER
RL_NAME
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

DE_RECS

DE_REC_IDSEQ
P_DE_IDSEQ
C_DE_IDSEQ
RL_NAME
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

COMPLEX_REP_TYPE_

CRTL_NAME
DESCRIPTION
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY
CREATED_BY

COMPLEX_DE_RELATIONSHIP

CDR_IDSEQ
C_DE_IDSEQ
P_DE_IDSEQ
DISPLAY_ORDER
DATE_MODIFIED
DATE_CREATED
MODIFIED_BY
CREATED_BY

COMPLEX_DATA_ELEMENTS

P_DE_IDSEQ
METHODS
RULE
CONCAT_CHAR
DATE_MODIFIED
DATE_CREATED
MODIFIED_BY
CREATED_BY
CRTL_NAME

DATA_ELEMENTS

DE_IDSEQ
VERSION
CONTE_IDSEQ
PREFERRED_NAME
VD_IDSEQ
DEC_IDSEQ
PREFERRED_DEFINITION
ASL_NAME
LONG_NAME
LATEST_VERSION_IND
DELETED_IND
DATE_CREATED
BEGIN_DATE
CREATED_BY
END_DATE
DATE_MODIFIED
MODIFIED_BY
CHANGE_NOTE

VD_RECS

VD_REC_IDSEQ
P_VD_IDSEQ
C_VD_IDSEQ
RL_NAME
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

VD_PV_RECS

VPR_IDSEQ
RL_NAME
P_VP_IDSEQ
C_VP_IDSEQ
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

RELATIONSHIPS_LOV

RL_NAME
DESCRIPTION
COMMENTS
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

DEC_RECS

DEC_REC_IDSEQ
P_DEC_IDSEQ
C_DEC_IDSEQ
RL_NAME
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

DATA_ELEMENT_CONCEPTS

DEC_IDSEQ
VERSION
PREFERRED_NAME
CONTE_IDSEQ
CD_IDSEQ
PROPL_NAME
OCL_NAME
PREFERRED_DEFINITION
ASL_NAME
LONG_NAME
LATEST_VERSION_IND
DELETED_IND
DATE_CREATED
BEGIN_DATE
CREATED_BY
END_DATE
DATE_MODIFIED
MODIFIED_BY
OBJ_CLASS_QUALIFIER
PROPERTY_QUALIFIER

CONTE_IDSEQ
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

D
R
C
_C
_D
EC
_F
K

D
R
C
_P
_D
EC
_F
K

D
R
C
_R
L_
FK

VP
R
_V
D
V_
FK
2

VP
R
_R
L_
FK

VP
R
_V
D
V_
FK

VR
_P
_V
D
_F
K

VR
_C
_V
D
_F
K

VR
_R
L_
FK

DE
_D
EC
_F
K

D
E_
VD
_

C
D
T_
D
E_
FK

C
D
E_
D
E_
FK

C
D
E_
C
D
T_
FK

C
D
T_
C
R
V_
FK

D
ER
_P
_D
E_
FK

D
ER
_C
_D
E_
FK

Q
C
_P
R
O
TO
_F
K

Q
R
S_
Q
C
_F
K1

Q
R
S_
Q
C
_F
K2

Q
C
_Q
TL
_F
K

QC
_A
SV
_F

Q
C
_D
ET
_F
K

Q
C
_R
FL
_F
K

Q
C
_V
PV
_F
K

TS
_Q
C
_F
K

TS
_T
ST
L_
FK

VD_PVS_SOURCES_E

VPS_IDSEQ
VP_IDSEQ
SRC_NAME
DATE_SUBMITTED
COMMENTS
DATE_CREATED
CREATED_BY

SOURCES_EXT

SRC_NAME
DESCRIPTION
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

CS_TYPES_LOV

CSTL_NAME
DESCRIPTION
COMMENTS
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

DESIGNATIONS

DESIG_IDSEQ
AC_IDSEQ
CONTE_IDSEQ
NAME
DETL_NAME
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY
LAE_NAME

DEFINITIONS

DEFIN_IDS
AC_IDSEQ
DEFINITIO
CONTE_ID
DATE_CRE
CREATED_
DATE_MO
MODIFIED
LAE_NAM

LA

DESIGNATION_T

DETL_NAM
DESCRIPTI
COMMENTS
CREATED_B
DATE_CREA
DATE_MOD
MODIFIED_

CS_RECS

CS_REC_IDSEQ
P_CS_IDSEQ
C_CS_IDSEQ
RL_NAME
DISPLAY_ORDER
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

CSI_TYPES_LOV

CSITL_NAME
DESCRIPTIO
COMMENTS
DATE_CREAT
CREATED_BY
DATE_MODIF
MODIFIED_BY

CS_CSI

CS_CSI_IDSEQ
CS_IDSEQ
CSI_IDSEQ
P_CS_CSI_IDSEQ
LINK_CS_CSI_IDSEQ
LABEL
DISPLAY_ORDER
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

CSI_RECS

CSI_REC_IDSEQ
P_CSI_IDSEQ
C_CSI_IDSEQ
RL_NAME
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

CLASS_SCHEME_ITEMS

CSI_IDSEQ
CSI_NAME
CSITL_NAME
DESCRIPTION
COMMENTS
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

CLASSIFICATION_SCHEMES

CS_IDSEQ
VERSION
PREFERRED_NAME
PREFERRED_DEFINITION
CONTE_IDSEQ
ASL_NAME
CSTL_NAME
LABEL_TYPE_FLAG
CMSL_NAME
LONG_NAME
LATEST_VERSION_IND
DELETED_IND
BEGIN_DATE
END_DATE
CHANGE_NOTE
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

RL_RUL

RRX_IDSEQ
RL_NAME
RRL_NAME
DATE_CREATED
CREATED_BY
DATE_MODIFIE
MODIFIED_BY

REL_USAGE_LOV

RRL_NAME
DESCRIPTION
COMMENTS
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

D
EC
_P
R
O
PE
_F
K

D
EC
_O
C
_F
K

R
R
X_
R
U
L_
FK

R
R
X_
R
L_
FK

D
ER
_R
L_
FK

C
_C
SI
R
_C
SI
_F
K

C
SI
R
_R
L_
FK

P_
C
SI
R
_C
SI
_F
K

LINK_CS_CSI_FK
P_CS_CSI_FK

C
S_
C
SI
_C
S_
FK

C
S_
C
SI
_C
SI
_F
K

C
SI
_C
SI
TL
_F
K

P_
C
SR
_C
S_
FK

C
_C
SR
_C
S_
FK

C
SR
_R
L_
FK

C
S_
C
M
SL
_F
K

D
EF
IN
_A
C
_F
K

D
ES
IG
_D
T_
FK

AC_CSI_CS_CSI_FK

AA
M
_A
SL
_F
K

AA
M
_C
M
SL
_F
K

C
S_
C
ST
L_
FK

Q
R
S_
R
LV
_F
K

VP
ST
_S
TL
_F
K

VP
ST
_V
PV
_F
K

AC_SOURCES_EXT

ACS_IDSEQ
AC_IDSEQ
SRC_NAME
DATE_SUBMITTED
CREATED_BY
DATE_CREATED
DATE_MODIFIED

UA_BUSINESS_ROLES

UBR_IDSEQ
SCUA_IDSEQ
BRL_NAME
ACTL_NAME
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

GRP_BUSINESS_ROLES

GBR_IDSEQ
SCG_IDSEQ
BRL_NAME
ACTL_NAME
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

AC_ACTIONS_MATRIX

AAM_IDSEQ
SCL_NAME
BRL_NAME
ASL_NAME
CMSL_NAME
READ_ALLOWED_IND
UPDATE_ALLOWED_IND
DELETE_ALLOWED_IND
VERSION_ALLOWED_IND
CHECKOUT_ALLOWED_IND
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

AC_WF_BUSINESS_ROLE

AWB_IDSEQ
AWR_IDSEQ
BRL_NAME
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

BUSINESS_ROLES_LOV

BRL_NAME
DESCRIPTION
COMMENTS
CREATE_ALLOWED_IND
READ_ALLOWED_IND
UPDATE_ALLOWED_IND
DELETE_ALLOWED_IND
VERSION_ALLOWED_IND
CHECKOUT_ALLOWED_IND
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

GROUP_RECS

PARENT_GRP_NA
CHILD_GRP_NAME
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

GROUPS

GRP_NAME
DESCRIPTION
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

USER_

SC_GROUPS

SCG_IDSEQ
SCL_NAME
GRP_NAME
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

AC_WF_RULES

AWR_IDSEQ
SCL_NAME
FROM_ASL_NAME
TO_ASL_NAME
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

AC_CSI

AC_CSI_IDSEQ
CS_CSI_IDSEQ
AC_IDSEQ
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

SECURITY_CONTEXTS_LOV

SCL_NAME
DESCRIPTION
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

AR_IDSEQ
AC_IDSEQ
ORG_IDSEQ
SUB_IDSEQ
REGIS_IDSEQ
REGISTRATION_STATUS
UNRESOLVED_ISSUE
ORIGIN
LAST_CHANGE
DATA_IDENTIFIER
VERSION_IDENTIFIER
IRDI
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

DOCUMENT_TYPES_LO

DCTL_NAME
DESCRIPTION
COMMENTS
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

REFERENCE_BLOBS

RD_IDSEQ
NAME
MIME_TYPE
DOC_SIZE
DAD_CHARSET
LAST_UPDATED
CONTENT_TYPE
BLOB_CONTENT
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

REFERENCE_DOCUMENTS

RD_IDSEQ
NAME
ORG_IDSEQ
DCTL_NAME
AC_IDSEQ
ACH_IDSEQ
AR_IDSEQ
RDTL_NAME
DOC_TEXT
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

AC_HISTORIES

ACH_IDSEQ
AC_IDSEQ
AL_NAME
SOURCE_AC_IDSEQ
ACTION_DATE
ARCHIVE_LOCATION
PERFORMED_BY
ARCHIVE_FORMAT
DATE_CREATED
CREATED_BY
DATE_MODIFIED
MODIFIED_BY

SEQ
Q
ON
DSEQ
EATED
_BY
ODIFIED
D_BY
E

ANGUAGES_LOV

NAME
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY
CREATED_BY

TYPES_

E
ON
S
BY
ATED
DIFIED
_BY

D
EF
IN
_L
AE
_F
K D
ES
IG
_A
C
_F
K

D
ES
IG
_L
AE
_F
K

AH
_A

R
D
_A
C
H
_F
K

R
D
_A
C
_F
K

RB_RD_FK

R
D
_D
C
TL
_F
K

R
D
_A
R
_F
K

AC
_C
SI
_A
C
_F
K

W
R_ASL_FRO

M
_FK

_FK

AW
R
_S
C
L_
FK

SC
G
_S
C
L_
FK

SC
G
_G
R
P_
FK

U
G
P_
G
R
P_
FK

PA
R
EN
T_
G
R
P_
FK

C
H
IL
D
_G
R
P_
FK

AW
B_
BR
L_
FK

AW
B_
AW

M
_F
K

AA
M
_B
R
L_
FK

AA
M
_S
C
L_
FK

G
BR
_B
R
L_
FK

G
BR
_S
C
G
_F
K

U
BR
_B
R
L_
FK

U
BR
_S
C
U
A_
FK

AS
T_
AC
T_
FK

AS
T_
ST
L_
FK

VD_PVS_SOURCES_HST

VPS_HST_IDSEQ
VPS_IDSEQ
VP_IDSEQ

VD_PVS_HST

VP_HST_IDSEQ
VP_IDSEQ
VD_IDSEQ

VALUE_DOMAINS_HST

VD_HST_IDSEQ
VD_IDSEQ
VERSION

SUBSTITUTIONS_EXT

SUB_IDSEQ
TYPE
CONTENT
SUBSTITUTION
DATE_CREATED

QUEST_CONTENTS_HST

QC_HST_IDSEQ
QC_IDSEQ
VERSION
QTL_NAME

PERMISSIBLE_VALUES_

PV_HST_IDSEQ
PV_IDSEQ
VALUE

ERRORS_EXT

ERROR_CODE
ERROR_TEXT
DATE_CREATED
CREATED_BY

DATA_ELEMENTS_HST

DE_HST_IDSEQ
DE_IDSEQ
VERSION
CONTE_IDSEQ
PREFERRED_NAME
VD_IDSEQ
DEC_IDSEQ
PREFERRED_DEFINIADMINISTERED_COMPONENTS_H

AC_HST_IDSEQ
AC_IDSEQ
ACTL_NAME
VERSION
BEGIN_DATE
PREFERRED_NAME
END_DATE

AC_SOURCES_HST

ACS_HST_IDSEQ
ACS_IDSEQ
AC_IDSEQ
SRC_NAME

UI_REFEREN

UA_NA
BRL_N
STE_R
SCUA_

UI_IMAGE_TYPES_L

UIITL_IDSEQ
IMAGE_TYPE UI_FRAMESETS

UIFS_IDSEQ
NAME
FRAMESET_D
ORDER_SEQ

UI_LINK_PARAMS

UILP_IDSEQ
UIL_IDSEQ
NAME
URL_LABEL
VALUE_SOURCE

UI_LINK_FRAMESET

UILF_IDSEQ
UIL_IDSEQ
UIFS_IDSEQ

UI_ITEM_HIERARCHI

UIIH_IDSEQ
P_UII_IDSEQ
C_UII_IDSEQ
OCCURRENCE_SE
SUPPRESS_PARE
UIH_IDSEQ

FRAME_NAME

UI_ITEM_LINK_RECS

UIILR_IDSEQ
UII_IDSEQ
UIL_IDSEQ
UIAL_NAME
ACTL_NAME
TARGET_FRAME

UI_HIERARCHIE

UIH_IDSE
TEXT
SEQUENC
NAME

UI_HIER_LINK_RECS

UIHLR_IDSEQ
UIH_IDSEQ
UIL_IDSEQ
UIAL_NAME
ACTL_NAME
TARGET_FRAME

UI_TYPES_LOV

UITL_NAME
DESCRIPTION
COMMENTS

UI_ITEM_IMAGES

UIIIM_IDSEQ
UITL_NAME
UIIMG_IDSEQ
UII_IDSEQ
IMAGE_USE_N

UI_IMAGES

UIIMG_IDSE
IMAGE_UR
HEIGHT
WIDTH

UI_ELEMENTS

UIE_IDSEQ
UITL_NAME
UIAL_NAME
ACTL_NAME
NAME
ORIENTATION
TARGET_FRAME
DISPLAY_TITLE
AUTO_OPEN_LEVE

UI_CONSTRAINTS

UICON_IDSEQ
UIE_IDSEQ
UII_IDSEQ

UI_ELEMENTS_ITEMS

UIEI_IDSEQ
UIE_IDSEQ
UII_IDSEQ
OCCURRENCE_SEQ

UI_ITEM_GENERATORS

UIG_IDSEQ
UII_IDSEQ
UIEI_IDSEQ
UIL_IDSEQ
SEQUENCE
TEXT

_GROUPS

UA_NAME
GRP_NAME
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

USER_ACCOUNTS

UA_NAME
DER_ADMIN_IND
NAME
TITLE
DESCRIPTION
ENABLED_IND
ORG_IDSEQ
PHONE_NUMBER
FAX_NUMBER
TELEX_NUMBER
MAIL_ADDRESS
ELECTRONIC_MAIL_AD
CREATED_BY
DATE_CREATED
MODIFIED_BY
DATE_MODIFIED

SC_USER_ACCOUNT

SCUA_IDSEQ
SCL_NAME
UA_NAME
CONTEXT_ADMIN
CREATED_BY
DATE_CREATED
DATE_MODIFIED
MODIFIED_BY

SC
U
A_
SC
L_
FK

SC
U
A_
U
A_
FK

U
G
P_
U
A_
FK

G
BR
_A
TL
_F
K

U
BR
_A
TL
_F
K

U
IG
_U
IE
I_
FK

U
IE
I_
U
IE
_F
K

U
IC
O
N
_U
IE
_F
K

U
III
M
_U
IIM
G
_F
K

U
IE
_U
IT
L_
FK

U
IE
_U
TV
_F
K

U
IG
_U
IL
_F
K

U
IH
LR
_U

U
IH
LR
_U
IH
_F
K

U
IE
_U
IA
L_
FK

U
IH
LR
_U
IA
L_
FK

U
IE
I_
U
II_
FKU
IC
O
N
_U
II_
FK

U
IG
_U
II_
FK

U
III
M
_U
II_
FK

U
IC
_U
A

U
IIL
R
_U
I

P_
U
IIR
_U
II_
FK

C
_U
II_
U
II_
FK

U
IL
FR
_U
IL
_F
K

U
IL
P_
U
IL
_F
K

U
IL
FR
_U
IF
S_
FK

U
R
E_
U
A_
FK

AC
S_
H
ST
_A
C
_H
ST
_F
K

D
E_
H
ST
_V
D
_H
ST
_F
K

Q
C
_H
ST
_D
E_
H
ST
_F
K

VP
_H
ST
_P
V_
H
ST
_F
K

Q
C
_H
ST
_V
P_
H
ST
_F
K

VP
_H
ST
_V
D
_H
ST
_F
K

VP
S_
H
ST
_V
P_
H
ST
_F
K

	CANCER BIOINFORMATICS INFRASTRUCTURE OBJECTS: CABIO
	The caBIO Domain Objects and the Unified Modeling Language
	Relationships Among Classes

	The Domain Object Hierarchy
	caBIO API Overview
	The Java API Search/Retrieve Paradigm
	The SOAP API
	The HTTP Interface

	The caBIO Java API
	Installing the caBIO Java API
	Defining the ClassPath
	Compiling and Running the GeneDemo Program
	Troubleshooting
	Understanding the GeneDemo Program

	The caBIO SOAP API
	Introduction to SOAP
	The SOAP API and caBIO
	Using the SOAP API with Perl and SOAP::LITE
	Accessing the caBIO SOAP Services
	Accessing the GeneService using SOAP::Lite
	Issuing a SOAP::Lite Service Request
	The complete geneClient.pl Perl Script:
	The XML Output and the Additional Arguments

	The caBIO HTTP Interface
	Overview
	Using the HTTP Interface
	Drilling Down Through Xlinks
	Controlling the Number of Items Returned
	Specifying the IP Address and Port in the URL
	Applying XSL to XML Output

	caBIO Data Sources
	References
	The Domain Object Catalog
	gov.nih.nci.caBIO.bean
	
	Agent
	Anomaly
	Chromosome
	ClinicalTrialProtocol
	Clone
	CMAPOntology
	CMAPOntologyRelationship
	ConceptSearch
	ConsensusSequence
	Contig
	Disease
	DiseaseRelationship
	ESTExperiment
	ExpressionExperiment
	ExpressionFeature
	ExpressionMeasurement
	ExpressionMeasurementArray
	Gene
	GeneAlias
	GeneHomolog
	GoOntology
	GoOntologyRelationship
	Histopathology
	Library
	MapLocation
	Organ
	OrganRelationship
	Pathway
	Protein
	ProteinHomolog
	Protocol
	ProtocolAssociation
	ReadSequence
	SAGEExperiment
	Sequence
	SNP
	Target
	Taxon
	Tissue
	TraceFile

	gov.nih.nci.caBIO.evs
	
	Concept
	Metaphrase
	SemanticType

	gov.nih.nci.caBIO.util.das
	
	DasDnaDna
	DasDnaSequence
	DasDnaSet
	DasDsn
	DasDsnDescription
	DasDsnSet
	DasDsnSource
	DasGff
	DasGffFeature
	DasGffGroup
	DasGffLink
	DasGffMethod
	DasGffSegment
	DasGffSet
	DasGffTarget
	DasGffType
	DasSegment
	DasTypesGff
	DasTypesSegment
	DasTypesSet
	DasTypesType

	SearchCriteria Object Mappings

	ENTERPRISE VOCABULARY SERVICES
	Introduction to the NCI Enterprise Vocabulary Services
	NCI Thesaurus
	NCICB Research Initiatives
	NCI Metathesaurus

	Local NCI Vocabularies
	The NCI Thesaurus Vocabulary
	The MMHCC Vocabulary
	The Core Terminology and Reference Model Vocabulary

	The Metaphrase Web Interface
	Navigating Over Related Concepts
	MeSH Headings Occurring in the Metathesaurus
	Advanced Browsing Options
	Viewing the NCI Thesaurus

	The caBIO Java API to the Enterprise Vocabulary Services
	Downloadable Flat File Formats

	CANCER DATA STANDARDS REPOSITORY
	The NCI Cancer Data Standards Repository
	Data Elements in the ISO/IEC 11179 Standard
	Concepts and Terminology
	Administration and Stewardship in the CaDSR

	The caDSR Web Interface
	The caDSR Search Interfaces
	Basic Search
	Full Text Search
	11179 Attribute Search
	Search Results
	Summary of Search Screen Behaviors

	Maintenance Screens for Administered Components
	Creating Administered Components

	Overview of the caDSR Data Model
	The caDSR Table Catalog
	caDSR Entity Relationships

